Journal of Molecular Medicine

, Volume 97, Issue 11, pp 1589–1600 | Cite as

The PNPLA3 I148M variant promotes lipid-induced hepatocyte secretion of CXC chemokines establishing a tumorigenic milieu

  • Hans Dieter NischalkeEmail author
  • Philipp Lutz
  • Eva Bartok
  • Benjamin Krämer
  • Bettina Langhans
  • Regina Frizler
  • Thomas Berg
  • Jochen Hampe
  • Stephan Buch
  • Christian Datz
  • Felix Stickel
  • Gunther Hartmann
  • Christian P. Strassburg
  • Jacob Nattermann
  • Ulrich Spengler
Original Article


The I148M variant of the Patatin-like phospholipase domain-containing 3 (PNPLA3) protein is associated with an increased risk for liver inflammation and hepatocellular carcinoma (HCC), but the underlying mechanism is unknown. We hypothesized that enhanced CXC chemokine secretion mediates hepatic inflammation that accelerates development of HCC. Expandable primary human (upcyte®) hepatocytes and human PLC/PRF/5 hepatoma cells were lentivirally transduced with both PNPLA3 I148M variants and stimulated with lipids. Cytokine levels in culture supernatant and patient sera (n = 80) were analyzed by ELISA. Supernatants were assessed in transmigration experiments, tube formation, and proliferation assays. In vitro, lipid stimulation of transduced hepatocytes dose-dependently induced the production of interleukin-8 and CXCL1 in hepatocytes carrying the PNPLA3 148M variant. In line, sera from PNPLA3 148M-positive patients with alcoholic liver cirrhosis contained higher levels of interleukin-8 and CXCL1 than patients with wild-type PNPLA3. Supernatants from lipid-stimulated hepatocytes with the PNPLA3 148M variant induced enhanced migration of white blood cells, angiogenesis, and cell proliferation in comparison with supernatants from wild-type hepatocytes via CXC receptors 1 and 2. Increased production of interleukin-8 and CXCL1 by hepatocytes carrying the PNPLA3 148M variant contributes to a pro-inflammatory and tumorigenic milieu in patients with alcoholic liver disease.

Key messages

  • The PNPLA3 148M variant is associated with cirrhosis and hepatocellular carcinoma.

  • Lipid stimulation of hepatocytes with this variant induces IL-8 and CXCL1.

  • Supernatants from hepatocytes with this variant promote migration and angiogenesis.

  • Sera from patients with this variant contained enhanced levels of IL-8 and CXCL1.

  • The PNPLA3 148M variant contributes to a tumorigenic milieu via IL-8 and CXCL1.


PNPLA3 148M IL-8 CXCL1 cirrhosis HCC alcoholic liver disease rs738409 



We thank Jennifer Söhne, Gudrun Hack, Lisa Behnke, and Saskia Schmitz for their perfect technical assistance.

Funding information

This study was funded by the Deutsche Krebshilfe (70112169) to HDN and US. FS was funded by grant SNF 310030_169196 from the Swiss National Fund. JN received funding by the German Research Foundation (DFG SFB/TRR 57). The funding organizations had no role in the design of the study, and collection, analysis, and interpretation of the data, or writing of the manuscript.

Compliance with ethical standards

The study protocol was approved by the ethics committee of the University of Bonn (number 351/15) and complied with the ethical guidelines given by the Declaration of Helsinki. Written informed consent was given from all patients.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

109_2019_1836_MOESM1_ESM.docx (548 kb)
ESM 1 (DOCX 547 kb)


  1. 1.
    Lozano R, Naghavi M, Foreman K et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2095–2128PubMedGoogle Scholar
  2. 2.
    Udompap P, Kim D, Kim WR (2015) Current and future burden of chronic nonmalignant liver disease. Clin Gastroenterol Hepatol 13:2031–2041PubMedPubMedCentralGoogle Scholar
  3. 3.
    Tian C, Stokowski RP, Kershenobich D et al (2010) Variant in PNPLA3 is associated with alcoholic liver disease. Nat Genet 42:21–23PubMedGoogle Scholar
  4. 4.
    Romeo S, Kozlitina J, Xing C et al (2008) Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 40:1461–1465PubMedPubMedCentralGoogle Scholar
  5. 5.
    Buch S, Stickel F, Trépo E et al (2015) A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat Genet 47:1443–1448PubMedGoogle Scholar
  6. 6.
    Rotman Y, Koh C, Zmuda JM et al (2010) The association of genetic variability in patatin-like phospholipase domain-containing protein 3 (PNPLA3) with histological severity of nonalcoholic fatty liver disease. Hepatology 52:894–903PubMedPubMedCentralGoogle Scholar
  7. 7.
    Nischalke HD, Berger C, Luda C et al (2011) The PNPLA3 rs738409 148M/M genotype is a risk factor for liver cancer in alcoholic cirrhosis but shows no or weak association in hepatitis C cirrhosis. PLoS One 6:e27087PubMedPubMedCentralGoogle Scholar
  8. 8.
    Singal AG, Manjunath H, Yopp AC et al (2014) The effect of PNPLA3 on fibrosis progression and development of hepatocellular carcinoma: a meta-analysis. Am J Gastroenterol 109:325–334PubMedPubMedCentralGoogle Scholar
  9. 9.
    Stickel F, Buch S, Nischalke HD, Weiss KH, Gotthardt D, Fischer J, Rosendahl J, Marot A, Elamly M, Casper M, Lammert F, McQuillin A, Zopf S, Spengler U, Marhenke S, Kirstein MM, Vogel A, Eyer F, Felden J, Wege H, Buch T, Schafmayer C, Braun F, Deltenre P, Berg T, Morgan MY, Hampe J (2018) Genetic variants in PNPLA3 and TM6SF2 predispose to the development of hepatocellular carcinoma in individuals with alcohol-related cirrhosis. Am J Gastroenterol 113:1475–1483PubMedGoogle Scholar
  10. 10.
    Huang Y, Cohen JC, Hobbs HH (2011) Expression and characterization of a PNPLA3 protein isoform (I148M) associated with nonalcoholic fatty liver disease. J Biol Chem 286:37085–37093PubMedPubMedCentralGoogle Scholar
  11. 11.
    BasuRay S, Smagris E, Cohen JC, Hobbs HH (2017) The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology 66:1111–1124PubMedPubMedCentralGoogle Scholar
  12. 12.
    BasuRay S, Wang Y, Smagris E et al (2019) Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis. Proc Natl Acad Sci 116:9521–6Google Scholar
  13. 13.
    Pirazzi C, Valenti L, Motta BM et al (2014) PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum Mol Genet 23:4077–4085PubMedPubMedCentralGoogle Scholar
  14. 14.
    Dongiovanni P, Stender S, Pietrelli A et al (2018) Causal relationship of hepatic fat with liver damage and insulin resistance in nonalcoholic fatty liver. J Intern Med 283:356–370PubMedGoogle Scholar
  15. 15.
    Sookoian S, Castaño GO, Burgueño AL et al (2009) A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity. J Lipid Res 50:2111–2116PubMedPubMedCentralGoogle Scholar
  16. 16.
    Basantani MK, Sitnick MT, Cai L et al (2011) Pnpla3/adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome. J Lipid Res 52:318–329PubMedPubMedCentralGoogle Scholar
  17. 17.
    Smagris E, BasuRay S, Li J et al (2015) Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatol Baltim Md 61:108–118Google Scholar
  18. 18.
    Li JZ, Huang Y, Karaman R et al (2012) Chronic overexpression of PNPLA3I148M in mouse liver causes hepatic steatosis. J Clin Invest 122:4130–4144PubMedPubMedCentralGoogle Scholar
  19. 19.
    Speliotes EK, Butler JL, Palmer CD et al (2010) PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease. Hepatol Baltim Md 52:904–912Google Scholar
  20. 20.
    Ringelhan M, Pfister D, O’Connor T et al (2018) The immunology of hepatocellular carcinoma. Nat Immunol 19:222–232PubMedGoogle Scholar
  21. 21.
    Joshi-Barve S, Barve SS, Amancherla K et al (2007) Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology 46:823–830PubMedGoogle Scholar
  22. 22.
    Kutner RH, Zhang X-Y, Reiser J (2009) Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 4:495–505PubMedGoogle Scholar
  23. 23.
    McCoy JP Jr (2001) Handling, storage, and preparation of human blood cells. In: Robinson JP, Darzynkiewicz Z, Dobrucki J et al (eds) Current protocols in cytometry. John Wiley & Sons, Inc., HobokenGoogle Scholar
  24. 24.
    Achard CS, Laybutt DR (2012) Lipid-induced endoplasmic reticulum stress in liver cells results in two distinct outcomes: adaptation with enhanced insulin signaling or insulin resistance. Endocrinology 153:2164–2177PubMedGoogle Scholar
  25. 25.
    Salameh H, Raff E, Erwin A et al (2015) PNPLA3 gene polymorphism is associated with predisposition to and severity of alcoholic liver disease. Am J Gastroenterol 110:846–856PubMedGoogle Scholar
  26. 26.
    Trépo E, Nahon P, Bontempi G et al (2014) Association between the PNPLA3 (rs738409 C>G) variant and hepatocellular carcinoma: evidence from a meta-analysis of individual participant data. Hepatology 59:2170–2177PubMedGoogle Scholar
  27. 27.
    Reich H, Tritchler D, Herzenberg AM et al (2005) Albumin activates ERK via EGF receptor in human renal epithelial cells. J Am Soc Nephrol 16:1266–1278PubMedGoogle Scholar
  28. 28.
    Lindén D, Ahnmark A, Pingitore P et al (2019) Pnpla3 silencing with antisense oligonucleotides ameliorates nonalcoholic steatohepatitis and fibrosis in Pnpla3 I148M knock-in mice. Mol Metab 22:49–61PubMedPubMedCentralGoogle Scholar
  29. 29.
    Bruschi FV, Claudel T, Tardelli M et al (2017) The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells. Hepatology 65:1875–1890PubMedGoogle Scholar
  30. 30.
    Ma C, Zhang Q, Greten TF (2018) Nonalcoholic fatty liver disease promotes hepatocellular carcinoma through direct and indirect effects on hepatocytes. FEBS J 285:752–762PubMedGoogle Scholar
  31. 31.
    Marra F, Svegliati-Baroni G (2018) Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol 68:280–295PubMedGoogle Scholar
  32. 32.
    Willy JA, Young SK, Stevens JL et al (2015) CHOP links endoplasmic reticulum stress to NF- B activation in the pathogenesis of nonalcoholic steatohepatitis. Mol Biol Cell 26:2190–2204PubMedPubMedCentralGoogle Scholar
  33. 33.
    Valenti L, Motta BM, Soardo G et al (2013) PNPLA3 I148M polymorphism, clinical presentation, and survival in patients with hepatocellular carcinoma. PLoS One 8:e75982PubMedPubMedCentralGoogle Scholar
  34. 34.
    Hassan MM, Kaseb A, Etzel CJ et al (2013) Genetic variation in the PNPLA3 gene and hepatocellular carcinoma in USA: risk and prognosis prediction. Mol Carcinog 52:139–147Google Scholar
  35. 35.
    Vinader V, Afarinkia K (2012) The emerging role of CXC chemokines and their receptors in cancer. Future Med Chem 4:853–867PubMedGoogle Scholar
  36. 36.
    Zhou S-L, Dai Z, Zhou Z-J et al (2012) Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatology 56:2242–2254PubMedGoogle Scholar
  37. 37.
    Sadeghi M, Lahdou I, Oweira H et al (2015) Serum levels of chemokines CCL4 and CCL5 in cirrhotic patients indicate the presence of hepatocellular carcinoma. Br J Cancer 113:756–762PubMedPubMedCentralGoogle Scholar
  38. 38.
    Marra F, Tacke F (2014) Roles for chemokines in liver disease. Gastroenterology 147:577–594.e1PubMedGoogle Scholar
  39. 39.
    Zimmermann HW, Seidler S, Gassler N et al (2011) Interleukin-8 is activated in patients with chronic liver diseases and associated with hepatic macrophage accumulation in human liver fibrosis. PLoS One 6:e21381PubMedPubMedCentralGoogle Scholar
  40. 40.
    Nischalke HD, Berger C, Lutz P et al (2013) Influence of the CXCL1 rs4074 A allele on alcohol induced cirrhosis and HCC in patients of European descent. PLoS One 8:e80848PubMedPubMedCentralGoogle Scholar
  41. 41.
    Wu F-X, Wang Q, Zhang Z-M et al (2009) Identifying serological biomarkers of hepatocellular carcinoma using surface-enhanced laser desorption/ionization-time-of-flight mass spectroscopy. Cancer Lett 279:163–170PubMedGoogle Scholar
  42. 42.
    Yahya RS, Ghanem OH, Foyouh A-AA et al (2013) Role of interleukin-8 and oxidative stress in patients with hepatocellular carcinoma. Clin Lab 59:969–976PubMedGoogle Scholar
  43. 43.
    Chan SL, Chan AWH, Chan AKC et al (2017) Systematic evaluation of circulating inflammatory markers for hepatocellular carcinoma. Liver Int 37:280–289PubMedGoogle Scholar
  44. 44.
    Cui X, Li Z, Gao J et al (2016) Elevated CXCL1 increases hepatocellular carcinoma aggressiveness and is inhibited by miRNA-200a. Oncotarget 7:65052–65066Google Scholar
  45. 45.
    Cao Z, Fu B, Deng B et al (2014) Overexpression of chemokine (C-X-C) ligand 1 (CXCL1) associated with tumor progression and poor prognosis in hepatocellular carcinoma. Cancer Cell Int 14:86Google Scholar
  46. 46.
    Han K-Q, He X-Q, Ma M-Y et al (2015) Targeted silencing of CXCL1 by siRNA inhibits tumor growth and apoptosis in hepatocellular carcinoma. Int J Oncol 47:2131–2140PubMedGoogle Scholar
  47. 47.
    Huang W, Chen Z, Zhang L et al (2015) Interleukin-8 induces expression of FOXC1 to promote transactivation of CXCR1 and CCL2 in hepatocellular carcinoma cell lines and formation of metastases in mice. Gastroenterology 149:1053–1067.e14PubMedGoogle Scholar
  48. 48.
    Shen J, Wong GL-H, Chan HL-Y et al (2015) PNPLA3 gene polymorphism and response to lifestyle modification in patients with nonalcoholic fatty liver disease. J Gastroenterol Hepatol 30:139–146PubMedGoogle Scholar
  49. 49.
    Liu Y-L, Patman GL, Leathart JBS et al (2014) Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J Hepatol 61:75–81PubMedGoogle Scholar
  50. 50.
    Trépo E, Romeo S, Zucman-Rossi J, Nahon P (2016) PNPLA3 gene in liver diseases. J Hepatol 65:399–412PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hans Dieter Nischalke
    • 1
    Email author
  • Philipp Lutz
    • 1
  • Eva Bartok
    • 2
  • Benjamin Krämer
    • 1
  • Bettina Langhans
    • 1
  • Regina Frizler
    • 1
  • Thomas Berg
    • 3
  • Jochen Hampe
    • 4
  • Stephan Buch
    • 4
  • Christian Datz
    • 5
  • Felix Stickel
    • 6
  • Gunther Hartmann
    • 2
  • Christian P. Strassburg
    • 1
  • Jacob Nattermann
    • 1
  • Ulrich Spengler
    • 1
  1. 1.Department of Internal Medicine I, University HospitalUniversity of BonnBonnGermany
  2. 2.Institute of Clinical Chemistry and Clinical Pharmacology, University HospitalUniversity of BonnBonnGermany
  3. 3.Department of GastroenterologyUniversity Hospital LeipzigLeipzigGermany
  4. 4.Medical Department 1, University Hospital DresdenTU DresdenDresdenGermany
  5. 5.Department of Internal Medicine, Hospital OberndorfTeaching Hospital of the Paracelsus Private University of SalzburgSalzburgAustria
  6. 6.Department of Gastroenterology and HepatologyUniversity Hospital of ZürichZürichSwitzerland

Personalised recommendations