Advertisement

Journal of Molecular Medicine

, Volume 97, Issue 10, pp 1377–1383 | Cite as

The dichotomous function of interleukin-9 in cancer diseases

  • K. Gerlach
  • B. WeigmannEmail author
Review

Abstract

The pleiotropic function of the cytokine IL-9 is so far described in many inflammation processes and autoimmune diseases. But its role in cancer immunology is rather diverse as it can have a pro-tumorigenic function as well as anti-tumorigenic characteristics. In various disease models of cancer, this cytokine is involved in different signaling pathways triggering the expression of proteins involved in cell growth, migration, and transformation or repressing cells from the adaptive immune system to reject tumor growth. Additionally, there are even therapeutic approaches for IL-9 in cancer development. This review will give an overview of the various roles of IL-9 in different immune organs and cells and provide an insight in the current state of research in the IL-9-dependent cancer area.

Keywords

IL-9 Pro-tumorigenic role Anti-tumorigenic role Therapy 

Notes

References

  1. 1.
    Vegran F et al (2014) The transcription factor IRF1 dictates the IL-21-dependent anticancer functions of TH9 cells. Nat Immunol 15(8):758–766CrossRefPubMedGoogle Scholar
  2. 2.
    Schmitt E, Brandwijk RV, Snick JV, Siebold B, Rüde E (1989) TCGF III/P40 is produced by naive murine CD4+ T cells but is not a general T cell growth factor. Eur J Immunol 19(11):2167–2170CrossRefPubMedGoogle Scholar
  3. 3.
    Moeller J et al (1990) Purification of MEA, a mast cell growth-enhancing activity, to apparent homogeneity and its partial amino acid sequencing. J Immunol 144(11):4231–4234PubMedGoogle Scholar
  4. 4.
    Stassen M, Arnold M, Hültner L, Müller C, Neudörfl C, Reineke T, Schmitt E (2000) Murine bone marrow-derived mast cells as potent producers of IL-9: costimulatory function of IL-10 and kit ligand in the presence of IL-1. J Immunol 164(11):5549–5555CrossRefPubMedGoogle Scholar
  5. 5.
    Gounni AS, Nutku E, Koussih L, Aris F, Louahed J, Levitt RC, Nicolaides NC, Hamid Q (2000) IL-9 expression by human eosinophils: regulation by IL-1beta and TNF-alpha. J Allergy Clin Immunol 106(3):460–466CrossRefPubMedGoogle Scholar
  6. 6.
    Sun B, Zhu L, Tao Y, Sun HX, Li Y, Wang P, Hou Y, Zhao Y, Zhang X, Zhang L, Na N, Zhao Y (2018) Characterization and allergic role of IL-33-induced neutrophil polarization. Cell Mol Immunol 15(8):782–793CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Turner JE, Morrison PJ, Wilhelm C, Wilson M, Ahlfors H, Renauld JC, Panzer U, Helmby H, Stockinger B (2013) IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J Exp Med 210(13):2951–2965CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lauwerys BR, Garot N, Renauld JC, Houssiau FA (2000) Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18. J Immunol 165(4):1847–1853CrossRefPubMedGoogle Scholar
  9. 9.
    Druez C et al (1990) Functional and biochemical characterization of mouse P40/IL-9 receptors. J Immunol 145(8):2494–2499PubMedGoogle Scholar
  10. 10.
    Knoops L, Renauld JC (2004) IL-9 and its receptor: from signal transduction to tumorigenesis. Growth Factors 22(4):207–215CrossRefPubMedGoogle Scholar
  11. 11.
    Chen J, Petrus M, Bryant BR, Phuc Nguyen V, Goldman CK, Bamford R, Morris JC, Janik JE, Waldmann TA (2010) Autocrine/paracrine cytokine stimulation of leukemic cell proliferation in smoldering and chronic adult T-cell leukemia. Blood 116(26):5948–5956CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lange K, Uckert W, Blankenstein T, Nadrowitz R, Bittner C, Renauld JC, Snick J, Feller AC, Merz H (2003) Overexpression of NPM-ALK induces different types of malignant lymphomas in IL-9 transgenic mice. Oncogene 22(4):517–527CrossRefPubMedGoogle Scholar
  13. 13.
    Renauld JC, Vink A, Louahed J, van Snick J (1995) Interleukin-9 is a major anti-apoptotic factor for thymic lymphomas. Blood 85(5):1300–1305CrossRefGoogle Scholar
  14. 14.
    Tan H, Wang S, Zhao L (2017) A tumour-promoting role of Th9 cells in hepatocellular carcinoma through CCL20 and STAT3 pathways. Clin Exp Pharmacol Physiol 44(2):213–221CrossRefPubMedGoogle Scholar
  15. 15.
    Ye ZJ, Zhou Q, Yin W, Yuan ML, Yang WB, Xiong XZ, Zhang JC, Shi HZ (2012) Differentiation and immune regulation of IL-9-producing CD4+ T cells in malignant pleural effusion. Am J Respir Crit Care Med 186(11):1168–1179CrossRefPubMedGoogle Scholar
  16. 16.
    Hsieh TH, Hsu CY, Tsai CF, Chiu CC, Liang SS, Wang TN, Kuo PL, Long CY, Tsai EM (2016) A novel cell-penetrating peptide suppresses breast tumorigenesis by inhibiting beta-catenin/LEF-1 signaling. Sci Rep 6:19156CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hoelzinger DB, Dominguez AL, Cohen PA, Gendler SJ (2014) Inhibition of adaptive immunity by IL9 can be disrupted to achieve rapid T-cell sensitization and rejection of progressive tumor challenges. Cancer Res 74(23):6845–6855CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zivancevic-Simonovic S, Mihaljevic O, Majstorovic I, Popovic S, Markovic S, Milosevic-Djordjevic O, Jovanovic Z, Mijatovic-Teodorovic L, Mihajlovic D, Colic M (2015) Cytokine production in patients with papillary thyroid cancer and associated autoimmune Hashimoto thyroiditis. Cancer Immunol Immunother 64(8):1011–1019CrossRefPubMedGoogle Scholar
  19. 19.
    Purwar R, Schlapbach C, Xiao S, Kang HS, Elyaman W, Jiang X, Jetten AM, Khoury SJ, Fuhlbrigge RC, Kuchroo VK, Clark RA, Kupper TS (2012) Robust tumor immunity to melanoma mediated by interleukin-9-producing T cells. Nat Med 18(8):1248–1253CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Abdul-Wahid A, Cydzik M, Prodeus A, Alwash M, Stanojcic M, Thompson M, Huang EHB, Shively JE, Gray-Owen SD, Gariépy J (2016) Induction of antigen-specific TH 9 immunity accompanied by mast cell activation blocks tumor cell engraftment. Int J Cancer 139(4):841–853CrossRefPubMedGoogle Scholar
  21. 21.
    Lu Y, Hong S, Li H, Park J, Hong B, Wang L, Zheng Y, Liu Z, Xu J, He J, Yang J, Qian J, Yi Q (2012) Th9 cells promote antitumor immune responses in vivo. J Clin Invest 122(11):4160–4171CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Park J, Li H, Zhang M, Lu Y, Hong B, Zheng Y, He J, Yang J, Qian J, Yi Q (2014) Murine Th9 cells promote the survival of myeloid dendritic cells in cancer immunotherapy. Cancer Immunol Immunother 63(8):835–845CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhao Y, Chu X, Chen J, Wang Y, Gao S, Jiang Y, Zhu X, Tan G, Zhao W, Yi H, Xu H, Ma X, Lu Y, Yi Q, Wang S (2016) Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells. Nat Commun 7:12368CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nakatsukasa H, Zhang D, Maruyama T, Chen H, Cui K, Ishikawa M, Deng L, Zanvit P, Tu E, Jin W, Abbatiello B, Goldberg N, Chen Q, Sun L, Zhao K, Chen WJ (2015) The DNA-binding inhibitor Id3 regulates IL-9 production in CD4(+) T cells. Nat Immunol 16(10):1077–1084CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bi, E., et al., Foxo1 and Foxp1 play opposing roles in regulating the differentiation and antitumor activity of TH9 cells programmed by IL-7. Sci Signal,2017. 10(500):  https://doi.org/10.1126/scisignal.aak9741
  26. 26.
    Fang Y, Chen X, Bai Q, Qin C, Mohamud AO, Zhu Z, Ball TW, Ruth CM, Newcomer DR, Herrick EJ, Nicholl MB (2015) IL-9 inhibits HTB-72 melanoma cell growth through upregulation of p21 and TRAIL. J Surg Oncol 111(8):969–974CrossRefPubMedGoogle Scholar
  27. 27.
    Lu Y et al (2018) Th9 cells represent a unique subset of CD4(+) T cells endowed with the ability to eradicate advanced tumors. Cancer Cell 33(6):1048–1060.e7CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cai L, Zhang Y, Zhang Y, Chen H, Hu J (2019) Effect of Th9/IL-9 on the growth of gastric cancer in nude mice. Onco Targets Ther 12:2225–2234CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Huang Y et al (2015) Association between low expression levels of interleukin-9 and colon cancer progression. Exp Ther Med 10(3):942–946CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mateu-Jimenez M, Curull V, Pijuan L, Sánchez-Font A, Rivera-Ramos H, Rodríguez-Fuster A, Aguiló R, Gea J, Barreiro E (2017) Systemic and tumor Th1 and Th2 inflammatory profile and macrophages in lung cancer: influence of underlying chronic respiratory disease. J Thorac Oncol 12(2):235–248CrossRefPubMedGoogle Scholar
  31. 31.
    Krzystek-Korpacka M, Zawadzki M, Kapturkiewicz B, Lewandowska P, Bednarz-Misa I, Gorska S, Witkiewicz W, Gamian A (2018) Subsite heterogeneity in the profiles of circulating cytokines in colorectal cancer. Cytokine 110:435–441CrossRefPubMedGoogle Scholar
  32. 32.
    Nonomura Y, Otsuka A, Nakashima C, Seidel JA, Kitoh A, Dainichi T, Nakajima S, Sawada Y, Matsushita S, Aoki M, Takenouchi T, Fujimura T, Hatta N, Koreeda S, Fukushima S, Honda T, Kabashima K (2016) Peripheral blood Th9 cells are a possible pharmacodynamic biomarker of nivolumab treatment efficacy in metastatic melanoma patients. Oncoimmunology 5(12):e1248327CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Forget MA, Haymaker C, Hess KR, Meng YJ, Creasy C, Karpinets T, Fulbright OJ, Roszik J, Woodman SE, Kim YU, Sakellariou-Thompson D, Bhatta A, Wahl A, Flores E, Thorsen ST, Tavera RJ, Ramachandran R, Gonzalez AM, Toth CL, Wardell S, Mansaray R, Patel V, Carpio DJ, Vaughn C, Farinas CM, Velasquez PG, Hwu WJ, Patel SP, Davies MA, Diab A, Glitza IC, Tawbi H, Wong MK, Cain S, Ross MI, Lee JE, Gershenwald JE, Lucci A, Royal R, Cormier JN, Wargo JA, Radvanyi LG, Torres-Cabala CA, Beroukhim R, Hwu P, Amaria RN, Bernatchez C (2018) Prospective analysis of adoptive TIL therapy in patients with metastatic melanoma: response, impact of anti-CTLA4, and biomarkers to predict clinical outcome. Clin Cancer Res 24(18):4416–4428CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Feng LL, Gao JM, Li PP, Wang X (2011) IL-9 contributes to immunosuppression mediated by regulatory T cells and mast cells in B-cell non-Hodgkin’s lymphoma. J Clin Immunol 31(6):1084–1094CrossRefPubMedGoogle Scholar
  35. 35.
    Kim IK, Kim BS, Koh CH, Seok JW, Park JS, Shin KS, Bae EA, Lee GE, Jeon H, Cho J, Jung Y, Han D, Kwon BS, Lee HY, Chung Y, Kang CY (2015) Glucocorticoid-induced tumor necrosis factor receptor-related protein co-stimulation facilitates tumor regression by inducing IL-9-producing helper T cells. Nat Med 21(9):1010–1017CrossRefPubMedGoogle Scholar
  36. 36.
    Xiao X, Shi X, Fan Y, Zhang X, Wu M, Lan P, Minze L, Fu YX, Ghobrial RM, Liu W, Li XC (2015) GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation. Nat Commun 6:8266CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ma X, Bi E, Huang C, Lu Y, Xue G, Guo X, Wang A, Yang M, Qian J, Dong C, Yi Q (2018) Cholesterol negatively regulates IL-9-producing CD8(+) T cell differentiation and antitumor activity. J Exp Med 215(6):1555–1569CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lu Y, Wang Q, Yi Q (2014) Anticancer Tc9 cells: long-lived tumor-killing T cells for adoptive therapy. Oncoimmunology 3:e28542CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Peters C, Häsler R, Wesch D, Kabelitz D (2016) Human Vdelta2 T cells are a major source of interleukin-9. Proc Natl Acad Sci U S A 113(44):12520–12525CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Golubovskaya V, Wu L (2016) Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy. Cancers (Basel) 8(3):36Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medicine 1, Kussmaul Campus for Medical ResearchUniversity of Erlangen-NurembergErlangenGermany
  2. 2.Medical Immunology Campus Erlangen, Medical Clinic 1Friedrich-Alexander University Erlangen-NürnbergErlangenGermany

Personalised recommendations