Skip to main content

Advertisement

Log in

Improvement of mesenchymal stromal cells and their derivatives for treating acute liver failure

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

After the death of large numbers of cells in liver tissue is triggered by various hepatotoxic factors, intimidating and life-threatening acute liver failure (ALF) can develop with high mortality and expensive costs. Although liver transplantation and hepatocyte transplantation have become substitutes for improving liver regeneration, their applications are inhibited by scarce tissue and cell resources. Therefore, the transplantation of mesenchymal stromal cells (MSCs) and their derivatives including hepatocyte-like cells (HLCs), conditioned medium (CM), and exosomes (Ex) can help alleviate liver injury in ALF individuals or animal models via engraftment into liver tissue, hepatogenic differentiation, the promotion of host hepatocyte proliferation, the secretion of anti-inflammatory factors and antioxidants, and the enhancement of liver regeneration in vivo. In addition, biomaterial scaffolds protect MSCs against a harsh microenvironment in vitro and in vivo, in addition to providing physical and directional support for liver regeneration. In this review, we aimed to discuss the underlying mechanisms and therapeutic effects of MSCs and their derivatives on rescuing ALF animal models according to current studies. Further breakthroughs are required to establish safer, more stable, and more effective stem cell–based therapy in regenerative medicine for repairing liver injury, thus reducing the morbidity and mortality of ALF in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ALF:

Acute liver failure

MSC:

Mesenchymal stromal cell

iPSCs:

Induced pluripotent stem cells

ESCs:

Embryonic stem cells

HLCs:

Hepatocyte-like cells

CCl4 :

Carbon tetrachloride

CM:

Conditioned medium

Ex:

Exosomes

HE:

Hepatic encephalopathy

INR:

International normalized ratio

ACLF:

Acute-on-chronic liver failure

APAP:

Acetaminophen

NKT:

Natural killer T

NK:

Natural killer

IFN-γ:

Interferon-gamma

TNF-α:

Tumor necrosis factor alpha

ConA:

Concanavalin A

α-GalCer:

Alpha-galactosylceramide

LPS:

Lipopolysaccharide

DCs:

Dendritic cells

Tregs:

T regulatory cells

TLR4:

Toll-like receptor 4

PMNs:

Polymorphonuclear neutrophils

IDO:

Indoleamine 2,3-dioxygenase

TGF:

Transforming growth factor

PGE2:

Prostaglandin E2

ATP:

Adenosine triphosphate

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

TBIL:

Total bilirubin

HO-1:

Heme oxygenase-1

AFP:

Alpha fetal protein

CK:

Cytokeratin

VEGF:

Vascular endothelial growth factor

HMGB1:

High mobility group box 1 protein

EpCAM:

Epithelial cell adhesion molecule

GSH:

Glutathione

Nrf2:

NF-E2-related factor 2

SOD:

Superoxide dismutase

HGF:

Hepatocyte growth factor

UCMSCs:

Umbilical cord–derived MSCs

IL-1Ra:

IL-1 receptor antagonist

BMMSCs:

Bone marrow–derived MSCs

ConA:

Concanavalin A

UCB-MSCs:

Umbilical cord blood–derived MSCs

ADMSCs:

Adipose-derived MSCs

iPSC-MSCs:

iPSC-derived MSCs

PCNA:

Proliferating cell nuclear antigen

SDF:

Stromal-derived factor

CXCR4:

Chemokine CXC receptor 4

ZD:

Zeaxanthin dipalmitate

H2O2 :

Hydrogen dioxide

miR-210:

MicroRNA-210

CAT:

Catalase

AF-MSCs:

Amniotic fluid–derived MSCs

HPL:

Hepatic progenitor-like

STAT3:

Signal transducer and activator of transcription 3

NKTregs:

Natural killer T regulatory cells

NKT17:

IL-17-producing natural killer T

MSC-H-CM:

CM derived from MSCs cocultured with hepatocytes

D-GalN:

D-galactosamine

H-CM:

CM derived from hepatocytes

NCM:

Nonconditioned medium

TAA:

Thioacetamide

ICAM:

Intercellular cell adhesion molecule

GPX1:

Glutathione peroxidase-1

PG:

Prostaglandin

PLGA:

Poly (lactic acid-glycolic acid)

RSF:

Regenerated silk fibroin

LADs:

Liver assist devices

References

  1. Saliba F, Samuel D (2013) Acute liver failure: current trends. J Hepatol 59(1):6–8

    Article  PubMed  Google Scholar 

  2. Bernal W, Auzinger G, Dhawan A, Wendon J (2010) Acute liver failure. Lancet (London, England) 376(9736):190–201

    Article  Google Scholar 

  3. Volarevic V, Nurkovic J, Arsenijevic N, Stojkovic M (2014) Concise review: therapeutic potential of mesenchymal stem cells for the treatment of acute liver failure and cirrhosis. Stem Cells (Dayton, Ohio) 32(11):2818–2823

    Article  CAS  Google Scholar 

  4. Huebert RC, Rakela J (2014) Cellular therapy for liver disease. Mayo Clin Proc 89(3):414–424

    Article  CAS  PubMed  Google Scholar 

  5. Ferrer JR, Chokechanachaisakul A, Wertheim JA (2015) New tools in experimental cellular therapy for the treatment of liver diseases. Curr Transplant Rep 2(2):202–210

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang ZH, Zhu W, Ren HZ, Zhao X, Wang S, Ma HC, Shi XL (2017) Mesenchymal stem cells increase expression of heme oxygenase-1 leading to anti-inflammatory activity in treatment of acute liver failure. Stem Cell Res Ther 8(1):70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang JF, Cao HC, Pan QL, Yu J, Li J, Li LJ (2015) Mesenchymal stem cells from the human umbilical cord ameliorate fulminant hepatic failure and increase survival in mice. Hepatobiliary Pancreat Dis Int 14(2):186–193

    Article  PubMed  Google Scholar 

  8. Deng L, Liu G, Wu X, Wang Y, Tong M, Liu B, Wang K, Peng Y, Kong X (2014) Adipose derived mesenchymal stem cells efficiently rescue carbon tetrachloride-induced acute liver failure in mouse. ScientificWorldJournal 2014:103643

    PubMed  PubMed Central  Google Scholar 

  9. Manzini BM, da Silva Santos Duarte A, Sankaramanivel S, Ramos AL, Latuf-Filho P, Escanhoela C, Kharmandayan P, Olalla Saad ST, Boin I, Malheiros Luzo AC (2015) Useful properties of undifferentiated mesenchymal stromal cells and adipose tissue as the source in liver-regenerative therapy studied in an animal model of severe acute fulminant hepatitis. Cytotherapy 17(8):1052–1065

    Article  CAS  PubMed  Google Scholar 

  10. Zagoura DS, Roubelakis MG, Bitsika V, Trohatou O, Pappa KI, Kapelouzou A, Antsaklis A, Anagnou NP (2012) Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure. Gut 61(6):894–906

    Article  CAS  PubMed  Google Scholar 

  11. Chen L, Xiang B, Wang X, Xiang C (2017) Exosomes derived from human menstrual blood-derived stem cells alleviate fulminant hepatic failure. Stem Cell Res Ther 8(1):9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moslem M, Valojerdi MR, Pournasr B, Muhammadnejad A, Baharvand H (2013) Therapeutic potential of human induced pluripotent stem cell-derived mesenchymal stem cells in mice with lethal fulminant hepatic failure. Cell Transplant 22(10):1785–1799

    Article  PubMed  Google Scholar 

  13. Lotfinia M, Kadivar M, Piryaei A, Pournasr B, Sardari S, Sodeifi N, Sayahpour FA, Baharvand H (2016) Effect of secreted molecules of human embryonic stem cell-derived mesenchymal stem cells on acute hepatic failure model. Stem Cells Dev 25(24):1898–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu C, Li L (2015) In vitro and in vivo hepatic differentiation of adult somatic stem cells and extraembryonic stem cells for treating end stage liver diseases. Stem Cells Int 2015:871972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang X, Hou J, Han Z, Wang Y, Hao C, Wei L, Shi Y (2013) One cell, multiple roles: contribution of mesenchymal stem cells to tumor development in tumor microenvironment. Cell Biosci 3(1):5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pascual-Miguelanez I, Salinas-Gomez J, Fernandez-Luengas D, Villar-Zarra K, Clemente LV, Garcia-Arranz M, Olmo DG (2015) Systemic treatment of acute liver failure with adipose derived stem cells. J Investig Surg 28(2):120–126

    Article  Google Scholar 

  17. di Bonzo LV, Ferrero I, Cravanzola C, Mareschi K, Rustichell D, Novo E, Sanavio F, Cannito S, Zamara E, Bertero M et al (2008) Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential. Gut 57(2):223–231

    Article  CAS  PubMed  Google Scholar 

  18. Kim S, Han YS, Lee JH, Lee SH (2018) Combination of MSC spheroids wrapped within autologous composite sheet dually protects against immune rejection and enhances stem cell transplantation efficacy. Tissue Cell 53:93–103

    Article  CAS  PubMed  Google Scholar 

  19. Baertschiger RM, Serre-Beinier V, Morel P, Bosco D, Peyrou M, Clement S, Sgroi A, Kaelin A, Buhler LH, Gonelle-Gispert C (2009) Fibrogenic potential of human multipotent mesenchymal stromal cells in injured liver. PLoS One 4(8):e6657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aurich H, Sgodda M, Kaltwasser P, Vetter M, Weise A, Liehr T, Brulport M, Hengstler JG, Dollinger MM, Fleig WE et al (2009) Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo. Gut 58(4):570–581

    Article  CAS  PubMed  Google Scholar 

  21. Ma HC, Wang X, Wu MN, Zhao X, Yuan XW, Shi XL (2016) Interleukin-10 contributes to therapeutic effect of mesenchymal stem cells for acute liver failure via signal transducer and activator of transcription 3 signaling pathway. Chin Med J 129(8):967–975

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wlodzimirow KA, Eslami S, Abu-Hanna A, Nieuwoudt M, Chamuleau RA (2012) Systematic review: acute liver failure - one disease, more than 40 definitions. Aliment Pharmacol Ther 35(11):1245–1256

    Article  CAS  PubMed  Google Scholar 

  23. Polson J, Lee WM (2005) AASLD position paper: the management of acute liver failure. Hepatology (Baltimore, Md) 41(5):1179–1197

    Article  Google Scholar 

  24. Bajaj JS, Moreau R, Kamath PS, Vargas HE, Arroyo V, Reddy KR, Szabo G, Tandon P, Olson J, Karvellas C et al (2018) Acute-on-chronic liver failure: getting ready for prime time? Hepatology (Baltimore, Md) 68(4):1621–1632

    Article  Google Scholar 

  25. O’Grady JG, Schalm SW, Williams R (1993) Acute liver failure: redefining the syndromes. Lancet (London, England) 342(8866):273–275

    Article  Google Scholar 

  26. Kim JD, Cho EJ, Ahn C, Park SK, Choi JY, Lee HC, Kim DY, Choi MS, Wang HJ, Kim IH et al (2018) A novel model to predict 1-month risk of transplant or death in hepatitis A-related acute liver failure. Hepatology (Baltimore, Md). https://doi.org/10.1002/hep.30262

  27. Wang L, Geng J (2017) Acute hepatitis E virus infection in patients with acute liver failure in China: not quite an uncommon cause. Hepatology (Baltimore, Md) 65(5):1769–1770

    Article  Google Scholar 

  28. Jung DH, Hwang S, Lim YS, Kim KH, Ahn CS, Moon DB, Ha TY, Song GW, Park GC, Lee SG (2018) Outcome comparison of liver transplantation for hepatitis A-related versus hepatitis B-related acute liver failure in adult recipients. Clin Transpl 32(1). https://doi.org/10.1111/ctr.13140

  29. Gallegos-Orozco JF, Rakela-Brodner J (2010) Hepatitis viruses: not always what it seems to be. Rev Med Chil 138(10):1302–1311

    Article  PubMed  Google Scholar 

  30. Reuben A, Koch DG, Lee WM (2010) Drug-induced acute liver failure: results of a U.S. multicenter, prospective study. Hepatology (Baltimore, Md) 52(6):2065–2076

    Article  Google Scholar 

  31. Lescot T, Karvellas C, Beaussier M, Magder S (2012) Acquired liver injury in the intensive care unit. Anesthesiology 117(4):898–904

    Article  PubMed  Google Scholar 

  32. Henrion J (2012) Hypoxic hepatitis. Liver Int 32(7):1039–1052

    Article  CAS  PubMed  Google Scholar 

  33. Ichai P, Samuel D (2008) Etiology and prognosis of fulminant hepatitis in adults. Liver Transpl 14(Suppl 2):S67–S79

    Article  PubMed  Google Scholar 

  34. Wyke RJ, Yousif-Kadaru AG, Rajkovic IA, Eddleston AL, Williams R (1982) Serum stimulatory activity and polymorphonuclear leucocyte movement in patients with fulminant hepatic failure. Clin Exp Immunol 50(2):442–449

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Clapperton M, Rolando N, Sandoval L, Davies E, Williams R (1997) Neutrophil superoxide and hydrogen peroxide production in patients with acute liver failure. Eur J Clin Investig 27(2):164–168

    Article  CAS  Google Scholar 

  36. Manakkat Vijay GK, Ryan JM, Abeles RD, Ramage S, Patel V, Bernsmeier C, Riva A, McPhail MJ, Tranah TH, Markwick LJ et al (2016) Neutrophil toll-like receptor 9 expression and the systemic inflammatory response in acetaminophen-induced acute liver failure. Crit Care Med 44(1):43–53

    Article  CAS  PubMed  Google Scholar 

  37. Kawashima R, Mochida S, Matsui A, YouLuTu ZY, Ishikawa K, Toshima K, Yamanobe F, Inao M, Ikeda H, Ohno A et al (1999) Expression of osteopontin in Kupffer cells and hepatic macrophages and stellate cells in rat liver after carbon tetrachloride intoxication: a possible factor for macrophage migration into hepatic necrotic areas. Biochem Biophys Res Commun 256(3):527–531

    Article  CAS  PubMed  Google Scholar 

  38. Ramaiah SK, Rittling S (2008) Pathophysiological role of osteopontin in hepatic inflammation, toxicity, and cancer. Toxicol Sci 103(1):4–13

    Article  CAS  PubMed  Google Scholar 

  39. Chang W, Song BW, Moon JY, Cha MJ, Ham O, Lee SY, Choi E, Hwang KC (2013) Anti-death strategies against oxidative stress in grafted mesenchymal stem cells. Histol Histopathol 28(12):1529–1536

    CAS  PubMed  Google Scholar 

  40. dos Santos DC, da Silva Gomes Martinho JM, Pacheco-Moreira LF, Carvalho Viana de Araujo C, Caroli-Bottino A, Pannain VL, Soares Trinta K, Gandini M, da Costa Neves PC, de Souza Matos DC et al (2009) Eosinophils involved in fulminant hepatic failure are associated with high interleukin-6 expression and absence of interleukin-5 in liver and peripheral blood. Liver Int 29(4):544–551

    Article  CAS  PubMed  Google Scholar 

  41. Izumi S, Hughes RD, Langley PG, Pernambuco JR, Williams R (1994) Extent of the acute phase response in fulminant hepatic failure. Gut 35(7):982–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kimura K, Ando K, Tomita E, Ohnishi H, Ishikawa T, Kakumu S, Muto Y, Moriwaki H (1999) Elevated intracellular IFN-gamma levels in circulating CD8+ lymphocytes in patients with fulminant hepatitis. J Hepatol 31(4):579–583

    Article  CAS  PubMed  Google Scholar 

  43. Nagaki M, Iwai H, Naiki T, Ohnishi H, Muto Y, Moriwaki H (2000) High levels of serum interleukin-10 and tumor necrosis factor-alpha are associated with fatality in fulminant hepatitis. J Infect Dis 182(4):1103–1108

    Article  CAS  PubMed  Google Scholar 

  44. Leifeld L, Cheng S, Ramakers J, Dumoulin FL, Trautwein C, Sauerbruch T, Spengler U (2002) Imbalanced intrahepatic expression of interleukin 12, interferon gamma, and interleukin 10 in fulminant hepatitis B. Hepatology (Baltimore, Md) 36(4 Pt 1):1001–1008

    Article  CAS  Google Scholar 

  45. Leber B, Spindelboeck W, Stadlbauer V (2012) Infectious complications of acute and chronic liver disease. Semin Respir Crit Care Med 33(1):80–95

    Article  PubMed  Google Scholar 

  46. Knolle PA, Gerken G, Loser E, Dienes HP, Gantner F, Tiegs G, Meyer zum Buschenfelde KH, Lohse AW (1996) Role of sinusoidal endothelial cells of the liver in concanavalin A-induced hepatic injury in mice. Hepatology (Baltimore, Md) 24(4):824–829

    Article  CAS  Google Scholar 

  47. Schumann J, Wolf D, Pahl A, Brune K, Papadopoulos T, van Rooijen N, Tiegs G (2000) Importance of Kupffer cells for T-cell-dependent liver injury in mice. Am J Pathol 157(5):1671–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang J, Cao X, Zhao J, Zhao H, Wei J, Li Q, Qi X, Yang Z, Wang L, Zhang H et al (2017) Critical roles of conventional dendritic cells in promoting T cell-dependent hepatitis through regulating natural killer T cells. Clin Exp Immunol 188(1):127–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tadokoro T, Morishita A, Sakamoto T, Fujihara S, Fujita K, Mimura S, Oura K, Nomura T, Tani J, Yoneyama H et al (2017) Galectin9 ameliorates fulminant liver injury. Mol Med Rep 16(1):36–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Matsumoto H, Kawamura T, Kobayashi T, Kanda Y, Kawamura H, Abo T (2011) Coincidence of autoantibody production with the activation of natural killer T cells in alpha-galactosylceramide-mediated hepatic injury. Immunology 133(1):21–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Santodomingo-Garzon T, Han J, Le T, Yang Y, Swain MG (2009) Natural killer T cells regulate the homing of chemokine CXC receptor 3-positive regulatory T cells to the liver in mice. Hepatology (Baltimore, Md) 49(4):1267–1276

    Article  CAS  Google Scholar 

  52. Huang JR, Tsai YC, Chang YJ, Wu JC, Hung JT, Lin KH, Wong CH, Yu AL (2014) alpha-Galactosylceramide but not phenyl-glycolipids induced NKT cell anergy and IL-33-mediated myeloid-derived suppressor cell accumulation via upregulation of egr2/3. J Immunol (Baltimore, Md : 1950) 192(4):1972–1981

    Article  CAS  Google Scholar 

  53. Biburger M, Tiegs G (2005) Alpha-galactosylceramide-induced liver injury in mice is mediated by TNF-alpha but independent of Kupffer cells. J Immunol (Baltimore, Md : 1950) 175(3):1540–1550

    Article  CAS  Google Scholar 

  54. Tirosh O, Artan A, Aharoni-Simon M, Ramadori G, Madar Z (2010) Impaired liver glucose production in a murine model of steatosis and endotoxemia: protection by inducible nitric oxide synthase. Antioxid Redox Signal 13(1):13–26

    Article  CAS  PubMed  Google Scholar 

  55. Schmid A, Kopp A, Hanses F, Karrasch T, Schaffler A (2014) C1q/TNF-related protein-3 (CTRP-3) attenuates lipopolysaccharide (LPS)-induced systemic inflammation and adipose tissue Erk-1/-2 phosphorylation in mice in vivo. Biochem Biophys Res Commun 452(1):8–13

    Article  CAS  PubMed  Google Scholar 

  56. Luster MI, Germolec DR, Yoshida T, Kayama F, Thompson M (1994) Endotoxin-induced cytokine gene expression and excretion in the liver. Hepatology (Baltimore, Md) 19(2):480–488

    Article  CAS  Google Scholar 

  57. Arthur MJ, Kowalski-Saunders P, Wright R (1988) Effect of endotoxin on release of reactive oxygen intermediates by rat hepatic macrophages. Gastroenterology 95(6):1588–1594

    Article  CAS  PubMed  Google Scholar 

  58. Imamura M, Tsutsui H, Yasuda K, Uchiyama R, Yumikura-Futatsugi S, Mitani K, Hayashi S, Akira S, Taniguchi S, Van Rooijen N et al (2009) Contribution of TIR domain-containing adapter inducing IFN-beta-mediated IL-18 release to LPS-induced liver injury in mice. J Hepatol 51(2):333–341

    Article  CAS  PubMed  Google Scholar 

  59. Yee SB, Ganey PE, Roth RA (2003) The role of Kupffer cells and TNF-alpha in monocrotaline and bacterial lipopolysaccharide-induced liver injury. Toxicol Sci 71(1):124–132

    Article  CAS  PubMed  Google Scholar 

  60. Rodriguez-Enriquez S, Kim I, Currin RT, Lemasters JJ (2006) Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy 2(1):39–46

    Article  CAS  PubMed  Google Scholar 

  61. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458(7242):1131–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rutherford A, Chung RT (2008) Acute liver failure: mechanisms of hepatocyte injury and regeneration. Semin Liver Dis 28(2):167–174

    Article  CAS  PubMed  Google Scholar 

  63. Kaplowitz N (2000) Mechanisms of liver cell injury. J Hepatol 32(1 Suppl):39–47

    Article  CAS  PubMed  Google Scholar 

  64. Jaeschke H, Lemasters JJ (2003) Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology 125(4):1246–1257

    Article  CAS  PubMed  Google Scholar 

  65. Banas A, Teratani T, Yamamoto Y, Tokuhara M, Takeshita F, Osaki M, Kato T, Okochi H, Ochiya T (2009) Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure. J Gastroenterol Hepatol 24(1):70–77

    Article  CAS  PubMed  Google Scholar 

  66. Yuan S, Jiang T, Sun L, Zheng R, Ahat N, Zhang Y (2013) The role of bone marrow mesenchymal stem cells in the treatment of acute liver failure. Biomed Res Int 2013:251846

    PubMed  PubMed Central  Google Scholar 

  67. Zheng S, Yang J, Tang Y, Shao Q, Guo L, Liu Q (2015) Effect of bone marrow mesenchymal stem cells transplantation on the serum and liver HMGB1 expression in rats with acute liver failure. Int J Clin Exp Pathol 8(12):15985–15992

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Li YW, Zhang C, Sheng QJ, Bai H, Ding Y, Dou XG (2017) Mesenchymal stem cells rescue acute hepatic failure by polarizing M2 macrophages. World J Gastroenterol 23(45):7978–7988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yuan S, Jiang T, Zheng R, Sun L, Cao G, Zhang Y (2014) Effect of bone marrow mesenchymal stem cell transplantation on acute hepatic failure in rats. Exp Ther Med 8(4):1150–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shi D, Zhang J, Zhou Q, Xin J, Jiang J, Jiang L, Wu T, Li J, Ding W, Sun S et al (2017) Quantitative evaluation of human bone mesenchymal stem cells rescuing fulminant hepatic failure in pigs. Gut 66(5):955–964

    Article  CAS  PubMed  Google Scholar 

  71. Li J, Xin J, Hao S, Zhang L, Jiang L, Chen D, Xie Q, Xu W, Cao H, Li L (2012) Return of the metabolic trajectory to the original area after human bone marrow mesenchymal stem cell transplantation for the treatment of fulminant hepatic failure. J Proteome Res 11(6):3414–3422

    Article  CAS  PubMed  Google Scholar 

  72. Huang YJ, Chen P, Lee CY, Yang SY, Lin MT, Lee HS, Wu YM (2016) Protection against acetaminophen-induced acute liver failure by omentum adipose tissue derived stem cells through the mediation of Nrf2 and cytochrome P450 expression. J Biomed Sci 23:5. https://doi.org/10.1186/s12929-016-0231-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu Z, Meng F, Li C, Zhou X, Zeng X, He Y, Mrsny RJ, Liu M, Hu X, Hu JF et al (2014) Human umbilical cord mesenchymal stromal cells rescue mice from acetaminophen-induced acute liver failure. Cytotherapy 16(9):1207–1219

    Article  CAS  PubMed  Google Scholar 

  74. Yun JW, Ahn JH, Kwon E, Kim SH, Kim H, Jang JJ, Kim WH, Kim JH, Han SY, Kim JT et al (2016) Human umbilical cord-derived esenchymal stem cells in acute liver injury: hepatoprotective efficacy, subchronic toxicity, tumorigenicity, and biodistribution. Regul Toxicol Pharmacol 81:437–447

    Article  CAS  PubMed  Google Scholar 

  75. Huang B, Cheng X, Wang H, Huang W, la Ga Hu Z, Wang D, Zhang K, Zhang H, Xue Z, Da Y et al (2016) Mesenchymal stem cells and their secreted molecules predominantly ameliorate fulminant hepatic failure and chronic liver fibrosis in mice respectively. J Transl Med 14:45. https://doi.org/10.1186/s12967-016-0792-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhao X, Shi X, Zhang Z, Ma H, Yuan X, Ding Y (2016) Combined treatment with MSC transplantation and neutrophil depletion ameliorates D-GalN/LPS-induced acute liver failure in rats. Clin Res Hepatol Gastroenterol 40(6):730–738

    Article  CAS  PubMed  Google Scholar 

  77. Yoshizumi Y, Yukawa H, Iwaki R, Fujinaka S, Kanou A, Kanou Y, Yamada T, Nakagawa S, Ohara T, Nakagiri K et al (2017) Immunomodulatory effects of adipose tissue-derived stem cells on concanavalin A-induced acute liver injury in mice. Cell Med 9(1–2):21–33

    Article  PubMed  Google Scholar 

  78. Zhu X, He B, Zhou X, Ren J (2013) Effects of transplanted bone-marrow-derived mesenchymal stem cells in animal models of acute hepatitis. Cell Tissue Res 351(3):477–486

    Article  CAS  PubMed  Google Scholar 

  79. Zhang Y, Cai W, Huang Q, Gu Y, Shi Y, Huang J, Zhao F, Liu Q, Wei X, Jin M et al (2014) Mesenchymal stem cells alleviate bacteria-induced liver injury in mice by inducing regulatory dendritic cells. Hepatology (Baltimore, Md) 59(2):671–682

    Article  CAS  Google Scholar 

  80. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V et al (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107(1):367–372

    Article  CAS  PubMed  Google Scholar 

  81. Hu C, Zhou N, Li J, Shi D, Cao H, Li L (2016) Porcine adipose-derived mesenchymal stem cells retain their stem cell characteristics and cell activities while enhancing the expression of liver-specific genes after acute liver failure. Int J Mol Sci 17(1). https://doi.org/10.3390/ijms17010062

  82. Li J, Tao R, Wu W, Cao H, Xin J, Guo J, Jiang L, Hong X, Demetriou AA, Farkas D et al (2010) Transcriptional profiling and hepatogenic potential of acute hepatic failure-derived bone marrow mesenchymal stem cells. Differ Res Biol Divers 80(2–3):166–174

    Article  CAS  Google Scholar 

  83. Faiella W, Atoui R (2016) Immunotolerant properties of mesenchymal stem cells: updated review. Stem Cells Int 2016:1859567

    Article  PubMed  Google Scholar 

  84. Meier RP, Muller YD, Morel P, Gonelle-Gispert C, Buhler LH (2013) Transplantation of mesenchymal stem cells for the treatment of liver diseases, is there enough evidence? Stem Cell Res 11(3):1348–1364

    Article  CAS  PubMed  Google Scholar 

  85. Park CH, Bae SH, Kim HY, Kim JK, Jung ES, Chun HJ, Song MJ, Lee SE, Cho SG, Lee JW et al (2013) A pilot study of autologous CD34-depleted bone marrow mononuclear cell transplantation via the hepatic artery in five patients with liver failure. Cytotherapy 15(12):1571–1579

    Article  CAS  PubMed  Google Scholar 

  86. Zhang S, Chen L, Liu T, Zhang B, Xiang D, Wang Z, Wang Y (2012) Human umbilical cord matrix stem cells efficiently rescue acute liver failure through paracrine effects rather than hepatic differentiation. Tissue Eng A 18(13–14):1352–1364

    Article  CAS  Google Scholar 

  87. Sun K, Xie X, Xie J, Jiao S, Chen X, Zhao X, Wang X, Wei L (2014) Cell-based therapy for acute and chronic liver failures: distinct diseases, different choices. Sci Rep 4:6494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zare H, Jamshidi S, Dehghan MM, Saheli M, Piryaei A (2018) Bone marrow or adipose tissue mesenchymal stem cells: comparison of the therapeutic potentials in mice model of acute liver failure. J Cell Biochem 119(7):5834–5842

    Article  CAS  PubMed  Google Scholar 

  89. Zheng S, Yang J, Tang Y, Shao Q, Guo L, Liu Q (2015) Transplantation of umbilical cord mesenchymal stem cells via different routes in rats with acute liver failure. Int J Clin Exp Pathol 8(12):15854–15862

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Sun L, Fan X, Zhang L, Shi G, Aili M, Lu X, Jiang T, Zhang Y (2014) Bone mesenchymal stem cell transplantation via four routes for the treatment of acute liver failure in rats. Int J Mol Med 34(4):987–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Feng T, Zhang J, Zeng G, Zhou R, Tang X, Cui C, Li Y, Wang H, Li T, Zhu W et al (2015) Therapeutic potential of umbilical cord mesenchymal stem cells in mice with acute hepatic failure. Int J Artif Organs 38(5):271–276

    Article  PubMed  Google Scholar 

  92. Deng L, Kong X, Liu G, Li C, Chen H, Hong Z, Liu J, Xia J (2016) Transplantation of adipose-derived mesenchymal stem cells efficiently rescues thioacetamide-induced acute liver failure in mice. Transplant Proc 48(6):2208–2215

    Article  CAS  PubMed  Google Scholar 

  93. Kim SJ, Park KC, Lee JU, Kim KJ, Kim DG (2011) Therapeutic potential of adipose tissue-derived stem cells for liver failure according to the transplantation routes. J Korean Surg Soc 81(3):176–186

    Article  PubMed  PubMed Central  Google Scholar 

  94. Yuan SF, Jiang T, Sun LH, Zheng RJ, Cao GQ, Ahat NZ, Zhang YX (2014) Use of bone mesenchymal stem cells to treat rats with acute liver failure. Genet Mol Res 13(3):6962–6980

    Article  CAS  PubMed  Google Scholar 

  95. Cao H, Yang J, Yu J, Pan Q, Li J, Zhou P, Li Y, Pan X, Wang Y, Li L (2012) Therapeutic potential of transplanted placental mesenchymal stem cells in treating Chinese miniature pigs with acute liver failure. BMC Med 10:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li J, Zhang L, Xin J, Jiang L, Zhang T, Jin L, Zhou P, Hao S, Cao H, Li L (2012) Immediate intraportal transplantation of human bone marrow mesenchymal stem cells prevents death from fulminant hepatic failure in pigs. Hepatology (Baltimore, Md) 56(3):1044–1052

    Article  Google Scholar 

  97. Sang JF, Shi XL, Han B, Huang T, Huang X, Ren HZ, Ding YT (2016) Intraportal mesenchymal stem cell transplantation prevents acute liver failure through promoting cell proliferation and inhibiting apoptosis. Hepatobiliary Pancreat Dis Int 15(6):602–611

    Article  PubMed  Google Scholar 

  98. Jin SZ, Meng XW, Han MZ, Sun X, Sun LY, Liu BR (2009) Stromal cell derived factor-1 enhances bone marrow mononuclear cell migration in mice with acute liver failure. World J Gastroenterol 15(21):2657–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Deng C, Qin A, Zhao W, Feng T, Shi C, Liu T (2014) Up-regulation of CXCR4 in rat umbilical mesenchymal stem cells induced by serum from rat with acute liver failure promotes stem cells migration to injured liver tissue. Mol Cell Biochem 396(1–2):107–116

    Article  CAS  PubMed  Google Scholar 

  100. Liu Y, Xiong Y, Xing F, Gao H, Wang X, He L, Ren C, Liu L, So KF, Xiao J (2017) Precise regulation of miR-210 is critical for the cellular homeostasis maintenance and transplantation efficacy enhancement of mesenchymal stem cells in acute liver failure therapy. Cell Transplant 26(5):805–820

    Article  PubMed  PubMed Central  Google Scholar 

  101. Zeng W, Xiao J, Zheng G, Xing F, Tipoe GL, Wang X, He C, Chen ZY, Liu Y (2015) Antioxidant treatment enhances human mesenchymal stem cell anti-stress ability and therapeutic efficacy in an acute liver failure model. Sci Rep 5:11100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ma H, Shi X, Yuan X, Ding Y (2016) IL-1beta siRNA adenovirus benefits liver regeneration by improving mesenchymal stem cells survival after acute liver failure. Ann Hepatol 15(2):260–270

    CAS  PubMed  Google Scholar 

  103. Zheng YB, Zhang XH, Huang ZL, Lin CS, Lai J, Gu YR, Lin BL, Xie DY, Xie SB, Peng L et al (2012) Amniotic-fluid-derived mesenchymal stem cells overexpressing interleukin-1 receptor antagonist improve fulminant hepatic failure. PLoS One 7(7):e41392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang K, Li Y, Zhu T, Zhang Y, Li W, Lin W, Li J, Zhu C (2017) Overexpression of c-Met in bone marrow mesenchymal stem cells improves their effectiveness in homing and repair of acute liver failure. Stem Cell Res Ther 8(1):162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ma HC, Shi XL, Ren HZ, Yuan XW, Ding YT (2014) Targeted migration of mesenchymal stem cells modified with CXCR4 to acute failing liver improves liver regeneration. World J Gastroenterol 20(40):14884–14894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Tang Y, Li Q, Meng F, Huang X, Li C, Zhou X, Zeng X, He Y, Liu J, Hu X et al (2016) Therapeutic potential of HGF-expressing human umbilical cord mesenchymal stem cells in mice with acute liver failure. Int J Hepatol 2016:5452487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Amiri F, Molaei S, Bahadori M, Nasiri F, Deyhim MR, Jalili MA, Nourani MR, Habibi Roudkenar M (2016) Autophagy-modulated human bone marrow-derived mesenchymal stem cells accelerate liver restoration in mouse models of acute liver failure. Iran Biomed J 20(3):135–144

    PubMed  PubMed Central  Google Scholar 

  108. Wang J, Ren H, Yuan X, Ma H, Shi X, Ding Y (2018) Interleukin-10 secreted by mesenchymal stem cells attenuates acute liver failure through inhibiting pyroptosis. Hepatol Res 48(3):E194–E202

    Article  CAS  PubMed  Google Scholar 

  109. Zhou R, Li Z, He C, Li R, Xia H, Li C, Xiao J, Chen ZY (2014) Human umbilical cord mesenchymal stem cells and derived hepatocyte-like cells exhibit similar therapeutic effects on an acute liver failure mouse model. PLoS One 9(8):e104392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Stock P, Bruckner S, Ebensing S, Hempel M, Dollinger MM, Christ B (2010) The generation of hepatocytes from mesenchymal stem cells and engraftment into murine liver. Nat Protoc 5(4):617–627

    Article  CAS  PubMed  Google Scholar 

  111. Zhang S, Zhu Z, Wang Y, Liu S, Zhao C, Guan W, Zhao Y (2018) Therapeutic potential of Bama miniature pig adipose stem cells induced hepatocytes in a mouse model with acute liver failure. Cytotechnology 70(4):1131–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tautenhahn HM, Bruckner S, Baumann S, Winkler S, Otto W, von Bergen M, Bartels M, Christ B (2016) Attenuation of postoperative acute liver failure by mesenchymal stem cell treatment due to metabolic implications. Ann Surg 263(3):546–556

    Article  PubMed  Google Scholar 

  113. Miyazaki M, Hardjo M, Masaka T, Tomiyama K, Mahmut N, Medina RJ, Niida A, Sonegawa H, Du G, Yong R et al (2007) Isolation of a bone marrow-derived stem cell line with high proliferation potential and its application for preventing acute fatal liver failure. Stem Cells (Dayton, Ohio) 25(11):2855–2863

    Article  CAS  Google Scholar 

  114. Wang H, Zhao T, Xu F, Li Y, Wu M, Zhu D, Cong X, Liu Y (2014) How important is differentiation in the therapeutic effect of mesenchymal stromal cells in liver disease? Cytotherapy 16(3):309–318

    Article  CAS  PubMed  Google Scholar 

  115. Li D, Fan J, He X, Zhang X, Zhang Z, Zeng Z, Ruan M, Cai L (2015) Therapeutic effect comparison of hepatocyte-like cells and bone marrow mesenchymal stem cells in acute liver failure of rats. Int J Clin Exp Pathol 8(1):11–24

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Milosavljevic N, Gazdic M, Simovic Markovic B, Arsenijevic A, Nurkovic J, Dolicanin Z, Djonov V, Lukic ML, Volarevic V (2017) Mesenchymal stem cells attenuate acute liver injury by altering ratio between interleukin 17 producing and regulatory natural killer T cells. Liver Transpl 23(8):1040–1050

    Article  PubMed  Google Scholar 

  117. Chen G, Jin Y, Shi X, Qiu Y, Zhang Y, Cheng M, Wang X, Chen C, Wu Y, Jiang F et al (2015) Adipose-derived stem cell-based treatment for acute liver failure. Stem Cell Res Ther 6:40. https://doi.org/10.1186/s13287-015-0040-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Parekkadan B, van Poll D, Suganuma K, Carter EA, Berthiaume F, Tilles AW, Yarmush ML (2007) Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One 2(9):e941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chen L, Zhang J, Yang L, Zhang G, Wang Y, Zhang S (2018) The effects of conditioned medium derived from mesenchymal stem cells cocultured with hepatocytes on damaged hepatocytes and acute liver failure in rats. Stem Cells Int 2018:9156560

    PubMed  PubMed Central  Google Scholar 

  120. Tan CY, Lai RC, Wong W, Dan YY, Lim SK, Ho HK (2014) Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther 5(3):76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu Y, Lou G, Li A, Zhang T, Qi J, Ye D, Zheng M, Chen Z (2018) AMSC-derived exosomes alleviate lipopolysaccharide/d-galactosamine-induced acute liver failure by miR-17-mediated reduction of TXNIP/NLRP3 inflammasome activation in macrophages. EBioMedicine 36:140–150

    Article  PubMed  PubMed Central  Google Scholar 

  122. Yan Y, Jiang W, Tan Y, Zou S, Zhang H, Mao F, Gong A, Qian H, Xu W (2017) hucMSC exosome-derived GPX1 is required for the recovery of hepatic oxidant injury. Mol Ther 25(2):465–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu Y, Ren H, Wang J, Yang F, Li J, Zhou Y, Yuan X, Zhu W, Shi X (2018) Prostaglandin E2 secreted by mesenchymal stem cells protects against acute liver failure via enhancing hepatocyte proliferation. FASEB J 33:2514–2525

    Article  PubMed  Google Scholar 

  124. Liang H, Huang K, Su T, Li Z, Hu S, Dinh PU, Wrona EA, Shao C, Qiao L, Vandergriff AC et al (2018) Mesenchymal stem cell/red blood cell-inspired nanoparticle therapy in mice with carbon tetrachloride-induced acute liver failure. ACS Nano 12(7):6536–6544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xiao JQ, Shi XL, Ma HC, Tan JJ, Lin z XQ, Ding YT (2013) Administration of IL-1Ra chitosan nanoparticles enhances the therapeutic efficacy of mesenchymal stem cell transplantation in acute liver failure. Arch Med Res 44(5):370–379

    Article  CAS  PubMed  Google Scholar 

  126. Liu M, Yang J, Hu W, Zhang S, Wang Y (2016) Superior performance of co-cultured mesenchymal stem cells and hepatocytes in poly(lactic acid-glycolic acid) scaffolds for the treatment of acute liver failure. Biomed Mater 11(1):015008. https://doi.org/10.1088/1748-6041/11/1/015008

    Article  CAS  PubMed  Google Scholar 

  127. Lin J, Meng L, Yao Z, Chen S, Yang J, Tang Z, Lin N, Xu R (2015) Use an alginate scaffold-bone marrow stromal cell (BMSC) complex for the treatment of acute liver failure in rats. Int J Clin Exp Med 8(8):12593–12600

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Xu L, Wang S, Sui X, Wang Y, Su Y, Huang L, Zhang Y, Chen Z, Chen Q, Du H et al (2017) Mesenchymal stem cell-seeded regenerated silk fibroin complex matrices for liver regeneration in an animal model of acute liver failure. ACS Appl Mater Interfaces 9(17):14716–14723

    Article  CAS  PubMed  Google Scholar 

  129. Yagi H, Parekkadan B, Suganuma K, Soto-Gutierrez A, Tompkins RG, Tilles AW, Yarmush ML (2009) Long-term superior performance of a stem cell/hepatocyte device for the treatment of acute liver failure. Tissue Eng A 15(11):3377–3388

    Article  CAS  Google Scholar 

  130. Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S, Xia L, Zhou N, Riddle M, Schroeder TM et al (2007) Sarcoma derived from cultured mesenchymal stem cells. Stem Cells (Dayton, Ohio) 25(2):371–379

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81700553), the China Postdoctoral Science Foundation (No. 2017 M183789), the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 81121002), and the Independent Fund of State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanjuan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Li, L. Improvement of mesenchymal stromal cells and their derivatives for treating acute liver failure. J Mol Med 97, 1065–1084 (2019). https://doi.org/10.1007/s00109-019-01804-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-019-01804-x

Keywords

Navigation