Advertisement

Overexpression of branched-chain amino acid aminotransferases rescues the growth defects of cells lacking the Barth syndrome-related gene TAZ1

  • Diana Antunes
  • Arpita Chowdhury
  • Abhishek Aich
  • Sreedivya Saladi
  • Nofar Harpaz
  • Mark Stahl
  • Maya Schuldiner
  • Johannes M. Herrmann
  • Peter Rehling
  • Doron RapaportEmail author
Original Article

Abstract

The yeast protein Taz1 is the orthologue of human Tafazzin, a phospholipid acyltransferase involved in cardiolipin (CL) remodeling via a monolyso CL (MLCL) intermediate. Mutations in Tafazzin lead to Barth syndrome (BTHS), a metabolic and neuromuscular disorder that primarily affects the heart, muscles, and immune system. Similar to observations in fibroblasts and platelets from patients with BTHS or from animal models, abolishing yeast Taz1 results in decreased total CL amounts, increased levels of MLCL, and mitochondrial dysfunction. However, the biochemical mechanisms underlying the mitochondrial dysfunction in BTHS remain unclear. To better understand the pathomechanism of BTHS, we searched for multi-copy suppressors of the taz1Δ growth defect in yeast cells. We identified the branched-chain amino acid transaminases (BCATs) Bat1 and Bat2 as such suppressors. Similarly, overexpression of the mitochondrial isoform BCAT2 in mammalian cells lacking TAZ improves their growth. Elevated levels of Bat1 or Bat2 did not restore the reduced membrane potential, altered stability of respiratory complexes, or the defective accumulation of MLCL species in yeast taz1Δ cells. Importantly, supplying yeast or mammalian cells lacking TAZ1 with certain amino acids restored their growth behavior. Hence, our findings suggest that the metabolism of amino acids has an important and disease-relevant role in cells lacking Taz1 function.

Key messages

  • Bat1 and Bat2 are multi-copy suppressors of retarded growth of taz1Δ yeast cells.

  • Overexpression of Bat1/2 in taz1Δ cells does not rescue known mitochondrial defects.

  • Supplementation of amino acids enhances growth of cells lacking Taz1 or Tafazzin.

  • Altered metabolism of amino acids might be involved in the pathomechanism of BTSH.

Keywords

Barth syndrome Cardiolipin Mitochondria Tafazzin/TAZ1 

Notes

Acknowledgments

We thank E. Kracker for excellent technical assistance, Dr. R. Lill for antibodies, and Dr. K.S. Dimmer for helpful discussions.

Funding information

This work was supported by the Barth Syndrome Foundation (D.R. and M.S.), the DFG D.I.P. program (D.R., J.M.H., and M.S.), SFB1002 (TP A06, PR), ERC (ERCAdG No. 339580, PR), MWK FoP 88b (PR), and the Max Planck Society (PR). D.A. was supported by the IMPRS “From Molecules to Organisms.”

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary material

109_2018_1728_MOESM1_ESM.pdf (768 kb)
ESM 1 (PDF 767 kb)

References

  1. 1.
    Baile MG, Whited K, Claypool SM (2013) Deacylation on the matrix side of the mitochondrial inner membrane regulates cardiolipin remodeling. Mol Biol Cell 24:2008–2020CrossRefGoogle Scholar
  2. 2.
    Baile MG, Sathappa M, Lu YW, Pryce E, Whited K, McCaffery JM, Han X, Alder NN, Claypool SM (2014) Unremodeled and remodeled cardiolipin are functionally indistinguishable in yeast. J Biol Chem 289:1768–1778CrossRefGoogle Scholar
  3. 3.
    Bazan S, Mileykovskaya E, Mallampalli VK, Heacock P, Sparagna GC, Dowhan W (2013) Cardiolipin-dependent reconstitution of respiratory supercomplexes from purified Saccharomyces cerevisiae complexes III and IV. J Biol Chem 288:401–411CrossRefGoogle Scholar
  4. 4.
    Bledsoe RK, Dawson PA, Hutson SM (1997) Cloning of the rat and human mitochondrial branched chain aminotransferases (BCATm). Biochim Biophys Acta 1339:9–13CrossRefGoogle Scholar
  5. 5.
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917CrossRefGoogle Scholar
  6. 6.
    Brandner K, Mick DU, Frazier AE, Taylor RD, Meisinger C, Rehling P (2005) Taz1, an outer mitochondrial membrane protein, affects stability and assembly of inner membrane protein complexes: implications for Barth syndrome. Mol Biol Cell 16:5202–5214CrossRefGoogle Scholar
  7. 7.
    Chen S, He Q, Greenberg ML (2008) Loss of tafazzin in yeast leads to increased oxidative stress during respiratory growth. Mol Microbiol 68:1061–1072CrossRefGoogle Scholar
  8. 8.
    Chi Z, Arneborg N (1999) Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants, and ethanol tolerance in Saccharomyces cerevisiae. J Appl Microbiol 86:1047–1052CrossRefGoogle Scholar
  9. 9.
    Chowdhury A, Aich A, Jain G, Wozny K, Lüchtenborg C, Hartmann M, Bernhard O, Balleiniger M, Ahmed Alfar E, Zieseniss A, Toischer K, Guan K, Rizzoli S, Brügger B, Fischer A, Katschinski D, Rehling P, Dudek J (2018) Mitochondrial ROS activate NF-kB in hypoxia to stimulate HIF-1a expression—a signaling process affected by defective cardiolipin-remodeling in Barth syndrome. Cell Rep 25:561–570CrossRefGoogle Scholar
  10. 10.
    Claypool SM, Koehler CM (2012) The complexity of cardiolipin in health and disease. Trends Biochem Sci 37:32–41CrossRefGoogle Scholar
  11. 11.
    Costa V, Amorim MA, Reis E, Quintanilha A, Moradas-Ferreira P (1997) Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase. Microbiology 143(Pt 5):1649–1656CrossRefGoogle Scholar
  12. 12.
    Daum G, Bohni PC, Schatz G (1982) Import of proteins into mitochondria. Cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J Biol Chem 257:13028–13033PubMedGoogle Scholar
  13. 13.
    Du X, Takagi H (2007) N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl Microbiol Biotechnol 75:1343–1351CrossRefGoogle Scholar
  14. 14.
    Elgersma Y, van Roermund CW, Wanders RJ, Tabak HF (1995) Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene. EMBO J 14:3472–3479CrossRefGoogle Scholar
  15. 15.
    Gartner F, Voos W, Querol A, Miller BR, Craig EA, Cumsky MG, Pfanner N (1995) Mitochondrial import of subunit Va of cytochrome c oxidase characterized with yeast mutants. J Biol Chem 270:3788–3795CrossRefGoogle Scholar
  16. 16.
    Gebert N, Joshi AS, Kutik S, Becker T, McKenzie M, Guan XL, Mooga VP, Stroud DA, Kulkarni G, Wenk MR, Rehling P, Meisinger C, Ryan MT, Wiedemann N, Greenberg ML, Pfanner N (2009) Mitochondrial cardiolipin involved in outer-membrane protein biogenesis: implications for Barth syndrome. Curr Biol 19:2133–2139CrossRefGoogle Scholar
  17. 17.
    Gietz RD, Woods RA (2006) Yeast transformation by the LiAc/SS carrier DNA/PEG method. Methods Mol Biol 313:107–120PubMedGoogle Scholar
  18. 18.
    Gonzalvez F, D'Aurelio M, Boutant M, Moustapha A, Puech JP, Landes T, Arnaune-Pelloquin L, Vial G, Taleux N, Slomianny C, Wanders RJ, Houtkooper RH, Bellenguer P, Moller IM, Gottlieb E, Vaz FM, Manfredi G, Petit PX (2013) Barth syndrome: cellular compensation of mitochondrial dysfunction and apoptosis inhibition due to changes in cardiolipin remodeling linked to tafazzin (TAZ) gene mutation. Biochim Biophys Acta 1832:1194–1206CrossRefGoogle Scholar
  19. 19.
    Gu Z, Valianpour F, Chen S, Vaz FM, Hakkaart GA, Wanders RJ, Greenberg ML (2004) Aberrant cardiolipin metabolism in the yeast taz1 mutant: a model for Barth syndrome. Mol Microbiol 51:149–158CrossRefGoogle Scholar
  20. 20.
    Ikon N, Ryan RO (2017) Barth syndrome: connecting cardiolipin to cardiomyopathy. Lipids 52:99–108CrossRefGoogle Scholar
  21. 21.
    Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-Borchart A, Doenges G, Schwob E, Schiebel E, Knop M (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21:947–962CrossRefGoogle Scholar
  22. 22.
    Jimenez J, Benitez T (1988) Yeast cell viability under conditions of high temperature and ethanol concentrations depends on the mitochondrial genome. Curr Genet 13:461–469CrossRefGoogle Scholar
  23. 23.
    Kiebish MA, Yang K, Liu X, Mancuso DJ, Guan S, Zhao Z, Sims HF, Cerqua R, Cade WT, Han X, Gross RW (2013) Dysfunctional cardiac mitochondrial bioenergetic, lipidomic, and signaling in a murine model of Barth syndrome. J Lipid Res 54:1312–1325CrossRefGoogle Scholar
  24. 24.
    Kingsbury JM, Sen ND, Cardenas ME (2015) Branched-chain aminotransferases control TORC1 signaling in Saccharomyces cerevisiae. PLoS Genet 11:e1005714CrossRefGoogle Scholar
  25. 25.
    Kispal G, Steiner H, Court DA, Rolinski B, Lill R (1996) Mitochondrial and cytosolic branched-chain amino acid transaminases from yeast, homologs of the myc oncogene-regulated Eca39 protein. J Biol Chem 271:24458–24464CrossRefGoogle Scholar
  26. 26.
    McKenzie M, Lazarou M, Thorburn DR, Ryan MT (2006) Mitochondrial respiratory chain supercomplexes are destabilized in Barth syndrome patients. J Mol Biol 361:462–469CrossRefGoogle Scholar
  27. 27.
    Minard KI, McAlister-Henn L (2009) Redox responses in yeast to acetate as the carbon source. Arch Biochem Biophys 483:136–143CrossRefGoogle Scholar
  28. 28.
    Palmieri L, Agrimi G, Runswick MJ, Fearnley IM, Palmieri F, Walker JE (2001) Identification in Saccharomyces cerevisiae of two isoforms of a novel mitochondrial transporter for 2-oxoadipate and 2-oxoglutarate. J Biol Chem 276:1916–1922CrossRefGoogle Scholar
  29. 29.
    Pfeiffer K, Gohil V, Stuart RA, Hunte C, Brandt U, Greenberg ML, Schagger H (2003) Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem 278:52873–52880CrossRefGoogle Scholar
  30. 30.
    Raja V, Joshi AS, Li G, Maddipati KR, Greenberg ML (2017) Loss of cardiolipin leads to perturbation of acetyl-CoA synthesis. J Biol Chem 292:1092–1102CrossRefGoogle Scholar
  31. 31.
    Sauerwald J, Jores T, Eisenberg-Bord M, Chuartzman SG, Schuldiner M, Rapaport D (2015) Genome-wide screens in Saccharomyces cerevisiae highlight a role for cardiolipin in biogenesis of mitochondrial outer membrane multispan proteins. Mol Cell Biol 35:3200–3211PubMedPubMedCentralGoogle Scholar
  32. 32.
    Schagger H (2002) Respiratory chain supercomplexes of mitochondria and bacteria. Biochim Biophys Acta 1555:154–159CrossRefGoogle Scholar
  33. 33.
    Schlame M, Towbin JA, Heerdt PM, Jehle R, DiMauro S, Blanck TJ (2002) Deficiency of tetralinoleoyl-cardiolipin in Barth syndrome. Ann Neurol 51:634–637CrossRefGoogle Scholar
  34. 34.
    Schlame M, Ren M, Xu Y, Greenberg ML, Haller I (2005) Molecular symmetry in mitochondrial cardiolipins. Chem Phys Lipids 138:38–49CrossRefGoogle Scholar
  35. 35.
    Stettler S, Chiannilkulchai N, Hermann-Le Denmat S, Lalo D, Lacroute F, Sentenac A, Thuriaux P (1993) A general suppressor of RNA polymerase I, II and III mutations in Saccharomyces cerevisiae. Mol Gen Genet 239:169–176PubMedGoogle Scholar
  36. 36.
    de Taffin de Tilques M, Tribouillard-Tanvier D, Tétaud E, Testet E, di Rago J-P, Lasserre J-P (2017) Overexpression of mitochondrial oxodicarboxylate carrier (ODC1) preserves oxidative phosphorylation in a yeast model of Barth syndrome. Dis Model Mech 10:439–450CrossRefGoogle Scholar
  37. 37.
    Tan T, Özbalci C, Brügger B, Rapaport D, Dimmer KS (2013) Mcp1 and Mcp2, two novel proteins involved in mitochondrial lipid homeostasis. J Cell Sci 126:3563–3574CrossRefGoogle Scholar
  38. 38.
    Tedesco L, Corsetti G, Ruocco C, Ragni M, Rossi F, Carruba MO, Valerio A, Nisoli E (2018) A specific amino acid formula prevents alcoholic liver disease in rodents. Am J Physiol Gastrointest Liver Physiol 314:G566–G582CrossRefGoogle Scholar
  39. 39.
    Valianpour F, Wanders RJ, Overmars H, Vreken P, Van Gennip AH, Baas F, Plecko B, Santer R, Becker K, Barth PG (2002) Cardiolipin deficiency in X-linked cardioskeletal myopathy and neutropenia (Barth syndrome, MIM 302060): a study in cultured skin fibroblasts. J Pediatr 141:729–733CrossRefGoogle Scholar
  40. 40.
    Vatrinet R, Leone G, De Luise M, Girolimetti G, Vidone M, Gasparre G, Porcelli AM (2017) The α-ketoglutarate dehydrogenase complex in cancer metabolic plasticity. Cancer Metab 5:3CrossRefGoogle Scholar
  41. 41.
    Vreken P, Valianpour F, Nijtmans LG, Grivell LA, Plecko B, Wanders RJ, Barth PG (2000) Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome. Biochem Biophys Res Commun 279:378–382CrossRefGoogle Scholar
  42. 42.
    Wach A, Brachat A, Alberti-Segui C, Rebischung C, Philippsen P (1997) Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13:1065–1075CrossRefGoogle Scholar
  43. 43.
    Xu Y, Phoon CK, Berno B, D'Souza K, Hoedt E, Zhang G, Neubert TA, Epand RM, Ren M, Schlame M (2016) Loss of protein association causes cardiolipin degradation in Barth syndrome. Nat Chem Biol 12:641–647CrossRefGoogle Scholar
  44. 44.
    Ye C, Lou W, Li Y, Chatzispyrou IA, Huttemann M, Lee I, Houtkooper RH, Vaz FM, Chen S, Greenberg ML (2014) Deletion of the cardiolipin-specific phospholipase Cld1 rescues growth and life span defects in the tafazzin mutant: implications for Barth syndrome. J Biol Chem 289:3114–3125CrossRefGoogle Scholar
  45. 45.
    Yofe I, Schuldiner M (2014) Primers-4-Yeast: a comprehensive web tool for planning primers for Saccharomyces cerevisiae. Yeast 31:77–80CrossRefGoogle Scholar
  46. 46.
    Zhang M, Mileykovskaya E, Dowhan W (2005) Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. J Biol Chem 280:29403–29408CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Diana Antunes
    • 1
  • Arpita Chowdhury
    • 2
  • Abhishek Aich
    • 2
  • Sreedivya Saladi
    • 3
  • Nofar Harpaz
    • 4
  • Mark Stahl
    • 5
  • Maya Schuldiner
    • 4
  • Johannes M. Herrmann
    • 3
  • Peter Rehling
    • 2
    • 6
    • 7
  • Doron Rapaport
    • 1
    Email author
  1. 1.Interfaculty Institute of BiochemistryUniversity of TübingenTübingenGermany
  2. 2.Department of Cellular BiochemistryUniversity Medical Center GöttingenGöttingenGermany
  3. 3.Cell BiologyUniversity of KaiserslauternKaiserslauternGermany
  4. 4.Department of Molecular GeneticsWeizmann Institute of ScienceRehovotIsrael
  5. 5.Center for Plant Molecular Biology (ZMBP)University of TübingenTübingenGermany
  6. 6.Göttingen Centre for Molecular BiosciencesGeorg-August-UniversityGöttingenGermany
  7. 7.Max Planck Institute for Biophysical ChemistryGöttingenGermany

Personalised recommendations