Advertisement

Was ist gesichert in der Therapie der akuten myeloischen Leukämie?

Schwerpunkt: Was ist gesichert in der Therapie?
  • 26 Downloads

Zusammenfassung

Die akute myeloische Leukämie (AML) entsteht durch eine maligne Transformation und Proliferation von myeloischen Vorläuferzellen, die zu einer Verdrängung der normalen Hämatopoese führt. Bei Erstdiagnose wird neben einer zytogenetischen Analyse auch die Mutationsdiagnostik von bei der AML häufiger mutierten Genen vorgenommen. Diese genetische Diagnostik ist wesentlich für die Risikostratifizierung und spätere Behandlung der Patienten. Für die intensiv behandelbaren Patienten wurden in den letzten Jahren drei neue Medikamente zugelassen: ein neuer Tyrosinkinaseinhibitor (Midostaurin) für Patienten mit einer FLT3-Mutation, eine besondere liposomale Zubereitung der Chemotherapie (CPX-351) für Formen der sekundären AML sowie ein CD33-Antikörper-Wirkstoff-Konjugat (Gemtuzumab-Ozogamicin) für die AML mit CD33-Expression. Die allogene Stammzelltransplantation bleibt die wesentliche Therapiekomponente für Patienten mit intermediärem und höherem Risiko sowie in der Rezidivsituation. Für ältere, nicht intensiv behandelbare Patienten ist der Einsatz von demethylierenden Substanzen die Therapie der Wahl. Ziel ist hier eine Lebensverlängerung bei akzeptabler Lebensqualität. In den letzten Jahren wurden auch für diese Patientengruppe neue vielversprechende Substanzen erfolgreich geprüft und in den USA bereits zugelassen. Dazu gehören der Bcl-2-Inhibitor Venetoclax, der in Deutschland bereits für die chronische lymphatische Leukämie zugelassen ist, sowie IDH1/IDH2-Inhibitoren für Patienten mit einer IDH1/IDH2-Mutation in ihren Leukämiezellen. Eine Sondergruppe der AML stellt die akute Promyelozytenleukämie dar, bei der eine Kombinationstherapie mit all-trans-Retinsäure und Arsentrioxid zu exzellenten Ergebnissen führt.

Schlüsselwörter

Molekulare Diagnostik Molekular zielgerichtete Therapie DNA-Demethylierung Venetoclax Akute Promyelozytenleukämie 

What is recommended in the treatment of acute myeloid leukemia?

Abstract

Acute myeloid leukemia (AML) is characterized by a malignant transformation and proliferation of myeloid progenitor cells that cause a replacement of normal hematopoiesis. Diagnostic workup for AML includes cytogenetic analysis and mutational screening covering frequently mutated genes in AML. The genetic analysis is required for risk stratification and treatment decisions. Very recently, three novel drugs have been approved for patients who can be intensively treated: a tyrosine kinase inhibitor (midostaurin) for patients with FLT3 mutations, a liposomal formulation of chemotherapy (CPX) for patients with features of secondary AML, and a CD33 antibody–drug conjugate (gemtuzumab–ozogamicin) for AML with CD33 expression. Allogeneic stem cell transplantation remains an important treatment strategy for patients with intermediate- or high-risk AML and for patients with relapsed AML. For elderly patients who cannot undergo intensive treatment, demethylating agents are the treatment of choice. The aim is to prolong life expectancy with acceptable quality of life. In recent clinical trials, novel drugs have shown promising results in this patient population. Some of these drugs have already been approved in the US. Among these drugs are the Bcl‑2 inhibitor venetoclax, which is already approved in Germany for chronic lymphatic leukemia, as well as IDH1/IDH2 inhibitors (the latter for patients with IDH1/IDH2 mutated AML). Acute promyelocytic leukemia represents a special type of AML that should be treated with a combination of all-trans retinoic acid and arsenic trioxide leading to excellent outcome.

Keywords

Molecular diagnostics Molecular targeted therapy DNA demethylation Venetoclax Leukemia, promyelocytic, acute 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

F. Thol weist auf folgende Beziehungen hin: Unterstützung klinischer Studien durch Astellas, Celgene, Novartis, Pfizer.

Für diesen Beitrag wurden von der Autorin keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    National Cancer Institute (2019) Cancer stat facts: leukemia - acute myeloid leukemia (AML). https://seer.cancer.gov/statfacts/html/amyl.html. Zugegriffen: 22.10.2019Google Scholar
  2. 2.
    Grimwade D, Walker H, Oliver F et al (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 92(7):2322–2333CrossRefGoogle Scholar
  3. 3.
    Dohner H, Estey E, Grimwade D et al (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129(4):424–447CrossRefGoogle Scholar
  4. 4.
    Papaemmanuil E, Gerstung M, Bullinger L et al (2016) Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 374(23):2209–2221CrossRefGoogle Scholar
  5. 5.
    Thol F, Gabdoulline R, Liebich A et al (2018) Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood 132(16):1703–1713CrossRefGoogle Scholar
  6. 6.
    Krug U, Rollig C, Koschmieder A et al (2010) Complete remission and early death after intensive chemotherapy in patients aged 60 years or older with acute myeloid leukaemia: a web-based application for prediction of outcomes. Lancet 376(9757):2000–2008CrossRefGoogle Scholar
  7. 7.
    Fernandez HF, Sun Z, Yao X et al (2009) Anthracycline dose intensification in acute myeloid leukemia. N Engl J Med 361(13):1249–1259CrossRefGoogle Scholar
  8. 8.
    Lowenberg B, Ossenkoppele GJ, van Putten W et al (2009) High-dose daunorubicin in older patients with acute myeloid leukemia. N Engl J Med 361(13):1235–1248CrossRefGoogle Scholar
  9. 9.
    Burnett AK, Russell NH, Hills RK et al (2015) A randomized comparison of daunorubicin 90 mg/m2 vs 60 mg/m2 in AML induction: results from the UK NCRI AML17 trial in 1206 patients. Blood 125(25):3878–3885CrossRefGoogle Scholar
  10. 10.
    Dendorfer S, Kramer M, Schmidt-Brücken K et al (2017) Induction therapy for AML with 90 Mg/m² daunorubicin results in higher troponin T serum levels in comparison to treatment with 60 Mg/m² daunorubicin. Blood 130:3901Google Scholar
  11. 11.
    Dohner H, Weisdorf DJ, Bloomfield CD (2015) Acute myeloid leukemia. N Engl J Med 373(12):1136–1152CrossRefGoogle Scholar
  12. 12.
    Schaich M, Rollig C, Soucek S et al (2011) Cytarabine dose of 36 g/m² compared with 12 g/m² within first consolidation in acute myeloid leukemia: results of patients enrolled onto the prospective randomized AML96 study. J Clin Oncol 29(19):2696–2702CrossRefGoogle Scholar
  13. 13.
    Burnett AK, Russell NH, Hills RK et al (2013) Optimization of chemotherapy for younger patients with acute myeloid leukemia: results of the medical research council AML15 trial. J Clin Oncol 31(27):3360–3368CrossRefGoogle Scholar
  14. 14.
    Gotlib J, Kluin-Nelemans HC, George TI et al (2016) Efficacy and safety of midostaurin in advanced systemic mastocytosis. N Engl J Med 374(26):2530–2541CrossRefGoogle Scholar
  15. 15.
    Stone RM, Mandrekar SJ, Sanford BL et al (2017) Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med 377(5):454–464CrossRefGoogle Scholar
  16. 16.
    Arber DA, Orazi A, Hasserjian R et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20):2391–2405CrossRefGoogle Scholar
  17. 17.
    Lancet JE, Cortes JE, Hogge DE et al (2014) Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. Blood 123(21):3239–3246CrossRefGoogle Scholar
  18. 18.
    Lancet JE, Uy GL, Cortes JE et al (2018) CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol 36(26):2684–2692CrossRefGoogle Scholar
  19. 19.
    Thol F, Schlenk RF (2014) Gemtuzumab ozogamicin in acute myeloid leukemia revisited. Expert Opin Biol Ther 14(8):1185–1195CrossRefGoogle Scholar
  20. 20.
    Bross PF, Beitz J, Chen G et al (2001) Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7(6):1490–1496PubMedGoogle Scholar
  21. 21.
    Petersdorf S, Kopecky KJ, Stuart RK (2009) Preliminary results of Southwest Oncology Group Study S0106. Annual Meeting of the American Society of Hematology, New Orleans. Abstract 790 (An International Intergroup Phase 3 randomized trial comparing the addition of gemtuzumab ozogamicin to standard induction therapy versus standard induction therapy followed by a second randomization to post-consolidation gemtuzumab ozogamicin versus no additional therapy for previously untreated acute myeloid leukemia)Google Scholar
  22. 22.
    Petersdorf SH, Kopecky KJ, Slovak M et al (2013) A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood 121(24):4854–4860CrossRefGoogle Scholar
  23. 23.
    Castaigne S, Pautas C, Terre C et al (2012) Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet 379(9825):1508–1516CrossRefGoogle Scholar
  24. 24.
    Amadori S, Suciu S, Stasi R et al (2013) Sequential combination of gemtuzumab ozogamicin and standard chemotherapy in older patients with newly diagnosed acute myeloid leukemia: results of a randomized phase III trial by the EORTC and GIMEMA consortium (AML-17). J Clin Oncol 31(35):4424–4430CrossRefGoogle Scholar
  25. 25.
    Hills RK, Castaigne S, Appelbaum FR et al (2014) Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol 15(9):986–996CrossRefGoogle Scholar
  26. 26.
    Burnett AK, Milligan D, Prentice AG et al (2007) A comparison of low-dose cytarabine and hydroxyurea with or without all-trans retinoic acid for acute myeloid leukemia and high-risk myelodysplastic syndrome in patients not considered fit for intensive treatment. Cancer 109(6):1114–1124CrossRefGoogle Scholar
  27. 27.
    Dombret H, Seymour JF, Butrym A et al (2015) International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30 % blasts. Blood 126(3):291–299CrossRefGoogle Scholar
  28. 28.
    DiNardo CD, Pratz K, Pullarkat V et al (2019) Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood 133(1):7–17CrossRefGoogle Scholar
  29. 29.
    Wei AH, Strickland SA Jr, Hou JZ et al (2019) Venetoclax combined with low-dose cytarabine for previously untreated patients with acute myeloid leukemia: results from a phase Ib/II study. J Clin Oncol 37(15):1277–1284CrossRefGoogle Scholar
  30. 30.
    Stein EM, DiNardo CD, Pollyea DA et al (2017) Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 130(6):722–731CrossRefGoogle Scholar
  31. 31.
    DiNardo CD, Stein EM, de Botton S et al (2018) Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med 378(25):2386–2398CrossRefGoogle Scholar
  32. 32.
    Cortes JE, Heidel FH, Hellmann A et al (2019) Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia 33(2):379–389CrossRefGoogle Scholar
  33. 33.
    Lo-Coco F, Avvisati G, Vignetti M et al (2013) Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med 369(2):111–121CrossRefGoogle Scholar
  34. 34.
    Platzbecker U, Avvisati G, Cicconi L et al (2017) Improved outcomes with retinoic acid and arsenic trioxide compared with retinoic acid and chemotherapy in non-high-risk acute promyelocytic leukemia: final results of the randomized Italian-German APL0406 trial. J Clin Oncol 35(6):605–612CrossRefGoogle Scholar
  35. 35.
    Onkopedia-Leitlinien für supportive Therapie der Deutschen Gesellschaft für Hämatologie und Medizinische Onkologie. https://www.onkopedia.com/de/onkopedia/guidelines

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik für Hämatologie, Hämostaseologie, Onkologie und StammzelltransplantationMedizinische Hochschule HannoverHannoverDeutschland

Personalised recommendations