Advertisement

Der Internist

, Volume 60, Issue 2, pp 133–140 | Cite as

Glukosestoffwechsel im fortgeschrittenen Lebensalter

  • T. Laurentius
  • M. Freitag
  • J. Eitner
  • A. Eisert
  • T. Bertsch
  • L. C. BollheimerEmail author
Schwerpunkt: Stoffwechselerkrankungen
  • 416 Downloads

Zusammenfassung

Spezifische Therapieempfehlungen für den Diabetes mellitus im Alter (>65 Jahre) basieren vornehmlich auf epidemiologischen Studien und dem geriatrischen Assessment der funktionalen Gesundheit. Darüber hinaus gibt es altersassoziierte Störungen des Glukosemetabolismus und der Glukosehomöostase, die für die Pathophysiologie des Diabetes mellitus im Alter von Bedeutung sind. Der Übersichtbeitrag konzentriert sich auf diese Veränderungen der Stoffwechselprozesse und ihre Bedeutung für eine spezialisierte Diabetologie im Alter. Dabei werden eine Zunahme der Insulinresistenz, die altersbedingte β‑zelluläre Sekretionsstörung und Veränderungen der Inkretinausschüttung beschrieben. Zusätzlich wird die klinische Relevanz dieser Effekte vor dem Hintergrund des zentralen geriatrischen Syndroms der Sarkopenie sowie der antidiabetischen Arzneimitteltherapie diskutiert.

Schlüsselwörter

Diabetes mellitus Alterungsprozesse Insulinresistenz Sarkopenie β-zelluläre Funktionsstörung 

Glucose metabolism in older patients

Abstract

Current guidelines for specialized treatment of diabetes mellitus in the elderly (>65 years old) are primarily based on epidemiologic studies and geriatric assessment of functional health. Yet, age-dependent alterations of glucose metabolism and homeostasis are highly relevant to the pathophysiology of diabetes in the elderly. In this review, we focus on age-related alterations in metabolic pathways and their relevance for the specialized diabetic care in the elderly. We review the role of increasing insulin resistance, age-related β‑cell dysfunction and incretin secretion. The clinical relevance of these effects will also be discussed in regard to the central geriatric syndrome of sarcopenia and antidiabetic drug therapy.

Keywords

Diabetes mellitus Aging Insulin resistance Sarcopenia Insulin-secreting cells 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

T. Laurentius, M. Freitag, J. Eitner, A. Eisert, T. Bertsch und L.C. Bollheimer geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    American Diabetes Association (2018) Standards of medical care in diabetes. Diabetes Care 41:5119CrossRefGoogle Scholar
  2. 2.
    DDG (2018) S2k-Leitlinie Diagnostik, Therapie und Verlaufskontrolle des Diabetes mellitus im Alter. https://www.awmf.org/leitlinien/detail/anmeldung/1/ll/057-017.html. Zugegriffen: 26. Okt. 2018Google Scholar
  3. 3.
    Barbieri M, Rizzo MR, Manzella D et al (2001) Age-related insulin resistance: is it an obligatory finding? The lesson from healthy centenarians. Diabetes Metab Res Rev 17:19–26CrossRefGoogle Scholar
  4. 4.
    Brinks R, Tamayo T, Kowall B et al (2012) Prevalence of type 2 diabetes in Germany in 2040: estimates from an epidemiological model. Eur J Epidemiol 27:791–797CrossRefGoogle Scholar
  5. 5.
    CDC (2017) National diabetes statistics report: estimates of diabetes and its burden in the United States. http://www.diabetes.org/assets/pdfs/basics/cdc-statistics-report-2017.pdf. Zugegriffen: 26. Okt. 2018Google Scholar
  6. 6.
    Cetrone M, Mele A, Tricarico D (2014) Effects of the antidiabetic drugs on the age-related atrophy and sarcopenia associated with diabetes type II. Curr Diabetes Rev 10:231–237CrossRefGoogle Scholar
  7. 7.
    Cruz-Jentoft AJ, Bahat G, Bauer J et al (2018) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing.  https://doi.org/10.1093/ageing/afy169 CrossRefPubMedCentralGoogle Scholar
  8. 8.
    De Tata V (2014) Age-related impairment of pancreatic beta-cell function: pathophysiological and cellular mechanisms. Front Endocrinol (Lausanne) 5:138Google Scholar
  9. 9.
    Defronzo RA (1979) Glucose intolerance and aging: evidence for tissue insensitivity to insulin. Diabetes 28:1095–1101CrossRefGoogle Scholar
  10. 10.
    Defronzo RA, Ferrannini E, Groop L et al (2015) Type 2 diabetes mellitus. Nat Rev Dis Primers 1:15019CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Du YF, Ou HY, Beverly EA et al (2014) Achieving glycemic control in elderly patients with type 2 diabetes: a critical comparison of current options. Clin Interv Aging 9:1963–1980PubMedPubMedCentralGoogle Scholar
  13. 13.
    Elahi D, Andersen DK, Muller DC et al (1984) The enteric enhancement of glucose-stimulated insulin release. The role of GIP in aging, obesity, and non-insulin-dependent diabetes mellitus. Diabetes 33:950–957CrossRefGoogle Scholar
  14. 14.
    Eng C, Kramer CK, Zinman B et al (2014) Glucagon-like peptide-1 receptor agonist and basal insulin combination treatment for the management of type 2 diabetes: a systematic review and meta-analysis. Lancet 384:2228–2234CrossRefGoogle Scholar
  15. 15.
    Gong Z, Muzumdar RH (2012) Pancreatic function, type 2 diabetes, and metabolism in aging. Int J Endocrinol 2012:320482CrossRefGoogle Scholar
  16. 16.
    Hairi NN, Cumming RG, Naganathan V et al (2010) Loss of muscle strength, mass (sarcopenia), and quality (specific force) and its relationship with functional limitation and physical disability: the Concord Health and Ageing in Men Project. J Am Geriatr Soc 58:2055–2062CrossRefGoogle Scholar
  17. 17.
    Hinneburg I (2012) Glucosetoleranzstörung: Nebenwirkung Diabetes. Pharm Ztg 157:38–45Google Scholar
  18. 18.
    Kahn SE, Larson VG, Schwartz RS et al (1992) Exercise training delineates the importance of B‑cell dysfunction to the glucose intolerance of human aging. J Clin Endocrinol Metab 74:1336–1342PubMedGoogle Scholar
  19. 19.
    Kalyani RR, Corriere M, Ferrucci L (2014) Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol 2:819–829CrossRefGoogle Scholar
  20. 20.
    Kalyani RR, Egan JM (2013) Diabetes and altered glucose metabolism with aging. Endocrinol Metab Clin North Am 42:333–347CrossRefGoogle Scholar
  21. 21.
    Kirkman MS, Briscoe VJ, Clark N et al (2012) Diabetes in older adults. Diabetes Care 35:2650–2664CrossRefGoogle Scholar
  22. 22.
    Klein RF (2018) Clinicaltrials protocol: Metformin and Muscle in insulin-resistant older veterans (M&M). https://clinicaltrials.gov/ct2/show/NCT01804049?term=sarcopenia&type=Intr&cond=metformin&rank=1. Zugegriffen: 26. Okt. 2018Google Scholar
  23. 23.
    Kob R, Bollheimer LC, Bertsch T et al (2015) Sarcopenic obesity: molecular clues to a better understanding of its pathogenesis? Biogerontology 16:15–29CrossRefGoogle Scholar
  24. 24.
    Koo BK, Roh E, Yang YS et al (2016) Difference between old and young adults in contribution of beta-cell function and sarcopenia in developing diabetes mellitus. J Diabetes Investig 7:233–240CrossRefGoogle Scholar
  25. 25.
    Liu J, Wu YY, Huang XM et al (2014) Ageing and type 2 diabetes in an elderly Chinese population: the role of insulin resistance and beta cell dysfunction. Eur Rev Med Pharmacol Sci 18:1790–1797PubMedGoogle Scholar
  26. 26.
    Mai K, Spranger J (2018) Diabetes mellitus Typ 2. Arzneimitteltherapie 36:159–167Google Scholar
  27. 27.
    Mcbean AM, Li S, Gilbertson DT et al (2004) Differences in diabetes prevalence, incidence, and mortality among the elderly of four racial/ethnic groups: whites, blacks, hispanics, and asians. Diabetes Care 27:2317–2324CrossRefGoogle Scholar
  28. 28.
    Meneilly GS, Elahi D (2005) Metabolic alterations in middle-aged and elderly lean patients with type 2 diabetes. Diabetes Care 28:1498–1499CrossRefGoogle Scholar
  29. 29.
    Meneilly GS, Ryan AS, Minaker KL et al (1998) The effect of age and glycemic level on the response of the beta-cell to glucose-dependent insulinotropic polypeptide and peripheral tissue sensitivity to endogenously released insulin. J Clin Endocrinol Metab 83:2925–2932PubMedGoogle Scholar
  30. 30.
    Meneilly GS, Ryan AS, Veldhuis JD et al (1997) Increased disorderliness of basal insulin release, attenuated insulin secretory burst mass, and reduced ultradian rhythmicity of insulin secretion in older individuals. J Clin Endocrinol Metab 82:4088–4093PubMedGoogle Scholar
  31. 31.
    Meneilly GS, Veldhuis JD, Elahi D (1999) Disruption of the pulsatile and entropic modes of insulin release during an unvarying glucose stimulus in elderly individuals. J Clin Endocrinol Metab 84:1938–1943PubMedGoogle Scholar
  32. 32.
    Morais JA, Jacob KW, Chevalier S (2018) Effects of aging and insulin resistant states on protein anabolic responses in older adults. Exp Gerontol 108:262–268CrossRefGoogle Scholar
  33. 33.
    Mordarska K, Godziejewska-Zawada M (2017) Diabetes in the elderly. Prz Menopauzalny 16:38–43PubMedPubMedCentralGoogle Scholar
  34. 34.
    Oya J, Nakagami T, Yamamoto Y et al (2014) Effects of age on insulin resistance and secretion in subjects without diabetes. Intern Med 53:941–947CrossRefGoogle Scholar
  35. 35.
    Petri H (2016) Arzneimittelnebenwirkungen: Welche Medikamente diabetogen wirken. Dtsch Arztebl Int 113:12Google Scholar
  36. 36.
    Petri H (2017) Das Interaktionspotential der oralen Antidiabetika. Krankenhauspharmazie 38:42–46Google Scholar
  37. 37.
    Rasmussen BB, Fujita S, Wolfe RR et al (2006) Insulin resistance of muscle protein metabolism in aging. Faseb J 20:768–769CrossRefGoogle Scholar
  38. 38.
    Reaven GM, Chen N, Hollenbeck C et al (1989) Effect of age on glucose tolerance and glucose uptake in healthy individuals. J Am Geriatr Soc 37:735–740CrossRefGoogle Scholar
  39. 39.
    Rena G, Hardie DG, Pearson ER (2017) The mechanisms of action of metformin. Diabetologia 60:1577–1585CrossRefGoogle Scholar
  40. 40.
    Richter B, Bandeira-Echtler E, Bergerhoff K et al (2008) Dipeptidyl peptidase-4 (DPP-4) inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd006739.pub2 CrossRefPubMedGoogle Scholar
  41. 41.
    Roth J, Muller N, Lehmann T et al (2016) HbA1c and age in non-diabetic subjects: an ignored association? Exp Clin Endocrinol Diabetes.  https://doi.org/10.1055/s-0042-105440 CrossRefPubMedGoogle Scholar
  42. 42.
    Schaaf L (2011) Vorsicht: Diese Medikamente sind diabetogen. MMW Fortschr Med 153:42–46CrossRefGoogle Scholar
  43. 43.
    Sinclair AJ (2011) Good clinical practice guidelines for care home residents with diabetes: an executive summary. Diabet Med 28:772–777CrossRefGoogle Scholar
  44. 44.
    Tamayo T, Brinks R, Hoyer A et al (2016) Prävalenz und Inzidenz von Diabetes mellitus in Deutschland. Dtsch Arztebl Int 113:177–182PubMedPubMedCentralGoogle Scholar
  45. 45.
    Van Den Beld AW, Kaufman JM, Zillikens MC et al (2018) The physiology of endocrine systems with ageing. Lancet Diabetes Endocrinol 6:647–658CrossRefGoogle Scholar
  46. 46.
    Wallace TM, Levy JC, Matthews DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27:1487–1495CrossRefGoogle Scholar
  47. 47.
    Xiao J, Weng J, Ji L et al (2014) Worse pancreatic beta-cell function and better insulin sensitivity in older Chinese without diabetes. J Gerontol A Biol Sci Med Sci 69:463–470CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • T. Laurentius
    • 1
  • M. Freitag
    • 1
    • 2
  • J. Eitner
    • 1
  • A. Eisert
    • 2
    • 3
  • T. Bertsch
    • 4
  • L. C. Bollheimer
    • 1
    Email author
  1. 1.Lehrstuhl für Altersmedizin, Klinik für Innere Medizin und Geriatrie am Franziskushospital AachenUniklinik RWTH AachenAachenDeutschland
  2. 2.ApothekeUniklinik RWTH AachenAachenDeutschland
  3. 3.Institut für Pharmakologie und ToxikologieUniklinik RWTH AachenAachenDeutschland
  4. 4.Institut für Klinische Chemie, Laboratoriumsmedizin und Transfusionsmedizin, Klinikum NürnbergParacelsus Medizinische PrivatuniversitätNürnbergDeutschland

Personalised recommendations