Advertisement

Neuropathische Schmerzsyndrome bei Ionenkanalerkrankungen

  • Maike F. Dohrn
  • Angelika Lampert
  • Nurcan Üçeyler
  • Ingo Kurth
Seltene Erkrankungen
  • 117 Downloads

Zusammenfassung

Hintergrund

Die Ursachen neuropathischer Schmerzen sind vielfältig und bleiben in vielen Fällen unklar. In den vergangenen Jahren konnten mehrere Schmerzsyndrome auf Veränderungen in Natriumkanalgenen zurückgeführt werden, sodass diese Gruppe seltener Erkrankungen in der Differenzialdiagnostik neuropathischer Schmerzen zunehmend zu berücksichtigen ist.

Material und Methoden

Auswertung von themenbezogener Literatur, Diskussion eigener Erfahrungen sowie Berücksichtigung bestehender Leitlinien.

Ergebnisse

Veränderungen in der elektrischen Erregbarkeit der schmerzleitenden Nervenfasern durch pathogene Varianten der Natriumkanäle führen zu Krankheitsbildern wie der Small-fiber-Neuropathie und verschiedenen Schmerzsyndromen. Die Gruppe dieser genetischen Erkrankungen wird besprochen und in die Differenzialdiagnostik des neuropathischen Schmerzes eingeordnet. Therapiekonzepte werden dargestellt und die bislang vorwiegend experimentellen Ansätze zur gezielten Modulation der Natriumkanäle diskutiert.

Schlussfolgerungen

Die Behandlung von Patienten mit chronischen neuropathischen Schmerzen erfordert interdisziplinäre Zusammenarbeit und gestaltet sich aufgrund eines unbefriedigenden Therapieansprechens oft schwierig. Zunehmende Erkenntnisse zu seltenen, genetisch bedingten Ionenkanalerkrankungen können zukünftig dazu beitragen, dass die pharmakologische Beeinflussung dieser zentralen Vermittler des Schmerzempfindens neue Impulse in der Schmerztherapie setzt.

Schlüsselwörter

Small-fiber-Neuropathie Primäre Erythromelalgie Polyneuropathien Ionenkanäle Natriumkanalblocker Natriumkanäle 

Neuropathic pain syndromes and channelopathies

Abstract

Background

The causes for neuropathic pain are manifold and remain unexplained in the majority of cases. In recent years a growing number of pain syndromes have been attributed to mutations in genes encoding voltage-gated sodium channels. Hence, this group of rare diseases should be considered in the differential diagnostics of neuropathic pain.

Material and methods

Evaluation of topic-related literature and discussion of own experiences as well as consideration of current guidelines.

Results

Alterations in the electrical excitability of nociceptive neurons by pathogenic mutations in sodium channels lead to disease patterns, such as small fiber neuropathy and various pain syndromes. This article summarizes the knowledge on these genetic diseases and discusses the differential diagnosis of neuropathic pain. Current treatment concepts are presented and the predominantly experimental approaches to targeted modulation of sodium channels are discussed.

Conclusion

The treatment of patients with chronic neuropathic pain requires interdisciplinary cooperation and is often difficult due to an unsatisfactory treatment response. Increasing knowledge on rare genetically determined channelopathies can contribute to the development of novel pharmaceuticals since ion channels are central players in the processing of pain.

Keywords

Small fiber neuropathy Erythromelalgia, primary Polyneuropathies Ion channels Sodium channel blockers Sodium channels 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M.F. Dohrn, A. Lampert, N. Üçeyler und I. Kurth geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren. Für Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts, über die Patienten zu identifizieren sind, liegt von ihnen und/oder ihren gesetzlichen Vertretern eine schriftliche Einwilligung vor.

Literatur

  1. 1.
    Adams D, Gonzalez-Duarte A, O’Riordan WD et al (2018) Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 379:11–21CrossRefGoogle Scholar
  2. 2.
    Alexandrou AJ, Brown AR, Chapman ML et al (2016) Subtype-selective small molecule inhibitors reveal a fundamental role for Nav1.7 in nociceptor electrogenesis, axonal conduction and presynaptic release. PLoS ONE 11:e152405CrossRefGoogle Scholar
  3. 3.
    Attal N, Cruccu G, Baron R et al (2010) EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur J Neurol 17:1113–e1188CrossRefGoogle Scholar
  4. 4.
    Baron R, Birklein F, Maier C, Quasthoff S, Sommer C, Tölle T et al (2016) Leitlinie „Therapie neuropathischer Schmerzen“ der Deutschen Gesellschaft für Neurologie (DGN)Google Scholar
  5. 5.
    Benson MD, Waddington-Cruz M, Berk JL et al (2018) Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med 379:22–31CrossRefGoogle Scholar
  6. 6.
    Carter GT, Jensen MP, Galer BS et al (1998) Neuropathic pain in Charcot-Marie-tooth disease. Arch Phys Med Rehabil 79:1560–1564CrossRefGoogle Scholar
  7. 7.
    Chernov-Rogan T, Li T, Lu G et al (2018) Mechanism-specific assay design facilitates the discovery of Nav1.7-selective inhibitors. Proc Natl Acad Sci U S A 115:E792–E801CrossRefGoogle Scholar
  8. 8.
    Cox JJ, Reimann F, Nicholas AK et al (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444:894–898CrossRefGoogle Scholar
  9. 9.
    Dohrn MF, Rocken C, De Bleecker JL et al (2013) Diagnostic hallmarks and pitfalls in late-onset progressive transthyretin-related amyloid-neuropathy. J Neurol 260:3093–3108CrossRefGoogle Scholar
  10. 10.
    Dworkin RH, O’Connor AB, Backonja M et al (2007) Pharmacologic management of neuropathic pain: evidence-based recommendations. Pain 132:237–251CrossRefGoogle Scholar
  11. 11.
    Faber CG, Hoeijmakers JG, Ahn HS et al (2012) Gain of function Nanu1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol 71:26–39CrossRefGoogle Scholar
  12. 12.
    Faber CG, Lauria G, Merkies IS et al (2012) Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci U S A 109:19444–19449CrossRefGoogle Scholar
  13. 13.
    Finnerup NB, Haroutounian S, Kamerman P et al (2016) Neuropathic pain: an updated grading system for research and clinical practice. Pain 157:1599–1606CrossRefGoogle Scholar
  14. 14.
    de Greef BTA, Hoeijmakers JGJ, Gorissen-Brouwers CML et al (2018) Associated conditions in small fiber neuropathy—a large cohort study and review of the literature. Eur J Neurol 25:348–355CrossRefGoogle Scholar
  15. 15.
    Hampl M, Eberhardt E, O’Reilly AO et al (2016) Sodium channel slow inactivation interferes with open channel block. Sci Rep 6:25974CrossRefGoogle Scholar
  16. 16.
    Julius D (2013) TRP channels and pain. Annu Rev Cell Dev Biol 29:355–384CrossRefGoogle Scholar
  17. 17.
    Kaluza L, Meents JE, Hampl M et al (2018) Loss-of-function of Nav1.8/D1639N linked to human pain can be rescued by lidocaine. Pflugers Arch 470:1787.  https://doi.org/10.1007/s00424-018-2189-x CrossRefPubMedGoogle Scholar
  18. 18.
    Kosek E, Cohen M, Baron R et al (2016) Do we need a third mechanistic descriptor for chronic pain states? Pain 157:1382–1386CrossRefGoogle Scholar
  19. 19.
    Lampert A, Eberhardt M, Waxman SG (2014) Altered sodium channel gating as molecular basis for pain: contribution of activation, inactivation, and resurgent currents. Handb Exp Pharmacol 221:91–110CrossRefGoogle Scholar
  20. 20.
    Lauria G, Hsieh ST, Johansson O et al (2010) European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur J Neurol 17:903–912, e944–909CrossRefGoogle Scholar
  21. 21.
    Leipold E, Liebmann L, Korenke GC et al (2013) A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet 45:1399–1404CrossRefGoogle Scholar
  22. 22.
    McDonnell A, Collins S, Ali Z et al (2018) Efficacy of the Nav1.7 blocker PF-05089771 in a randomised, placebo-controlled, double-blind clinical study in subjects with painful diabetic peripheral neuropathy. Pain 159:1465–1476CrossRefGoogle Scholar
  23. 23.
    Mucke M, Cuhls H, Radbruch L et al (2016) Quantitative sensory testing (QST). English version. Schmerz.  https://doi.org/10.1007/s00482-015-0093-2 CrossRefPubMedGoogle Scholar
  24. 24.
    Skeik et al (2012) Vasc Med 17(1):44–49CrossRefGoogle Scholar
  25. 25.
    Sommer CL, Brandner S, Dyck PJ et al (2010) Peripheral Nerve Society Guideline on processing and evaluation of nerve biopsies. J Peripher Nerv Syst 15:164–175CrossRefGoogle Scholar
  26. 26.
    Terkelsen AJ, Karlsson P, Lauria G et al (2017) The diagnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes. Lancet Neurol 16:934–944CrossRefGoogle Scholar
  27. 27.
    Üçeyler N, Kahn AK, Kramer D et al (2013) Impaired small fiber conduction in patients with Fabry disease: a neurophysiological case-control study. BMC Neurol 13:47CrossRefGoogle Scholar
  28. 28.
    Üçeyler N, Ganendiran S, Kramer D et al (2014) Characterization of pain in fabry disease. Clin J Pain 30:915–920CrossRefGoogle Scholar
  29. 29.
    Üçeyler N, Geng A, Reiners K et al (2015) Non-systemic vasculitic neuropathy: single-center follow-up of 60 patients. J Neurol 262:2092–2100CrossRefGoogle Scholar
  30. 30.
    Vetter I, Deuis JR, Mueller A et al (2017) NaV1.7 as a pain target—from gene to pharmacology. Pharmacol Ther 172:73–100CrossRefGoogle Scholar
  31. 31.
    Waxman SG, Merkies ISJ, Gerrits MM et al (2014) Sodium channel genes in pain-related disorders: phenotype-genotype associations and recommendations for clinical use. Lancet Neurol 13:1152–1160CrossRefGoogle Scholar
  32. 32.
    Zhang XY, Wen J, Yang W et al (2013) Gain-of-function mutations in SCN11A cause familial episodic pain. Am J Hum Genet 93:957–966CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Maike F. Dohrn
    • 1
  • Angelika Lampert
    • 2
  • Nurcan Üçeyler
    • 3
  • Ingo Kurth
    • 4
  1. 1.Klinik für NeurologieUniklinik RWTH AachenAachenDeutschland
  2. 2.Institut für PhysiologieUniklinik RWTH AachenAachenDeutschland
  3. 3.Neurologische KlinikUniversitätsklinikum WürzburgWürzburgDeutschland
  4. 4.Institut für HumangenetikUniklinik RWTH AachenAachenDeutschland

Personalised recommendations