Skip to main content
Log in

Personalisierte Therapie in der Kardiologie

Biomarker, Pharmakogenetik und Therapie monogener Erkrankungen

Personalized therapy in cardiology

Biomarkers, pharmacogenetics and therapy of monogenic diseases

  • Schwerpunkt
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Die verbesserte Therapie und Prophylaxe von Herz-Kreislauf-Erkrankungen hat wie kein anderer Bereich der Medizin zum Anstieg der Lebenserwartung beigetragen. Dennoch bleiben viele kardiologische Krankheiten schlecht therapierbar, und Standardtherapien nutzen nur einer Minderheit von Patienten oder verursachen mehr Nebenwirkungen als Nutzen. Personalisierte Ansätze versprechen neue Lösungswege. Die seltenen monogenen Herz-Kreislauf-Erkrankungen sind hierfür paradigmatisch und lassen sich heute in Einzelfällen „mutationsspezifisch“ behandeln. Dennoch sind die Erfolge insgesamt noch bescheiden. Das „next generation sequencing“ wird die Identifizierung krankheitsverursachender Mutationen erleichtern. Zellkulturmodelle auf der Basis induzierter pluripotenter Stammzellen lassen eine individuelle Testung pharmakologischer oder gentherapeutischer Therapieansätze erwarten. Gegenwärtig noch von untergeordneter klinischer Bedeutung ist die genetische Testung bei multifaktoriellen kardiovaskulären Volkskrankheiten. Biomarker haben dagegen das Potenzial, Individuen mit erhöhtem kardiovaskulärem Risiko zu identifizieren. Individualisierte, biomarkergeführte Therapien stellen eine attraktive Option für die Zukunft dar. Dafür ist die troponingesteuerte Therapie akuter Koronarsyndrome erfolgreiches Beispiel. Schließlich ist die individuelle Reaktion auf Arzneimittel teilweise genetisch determiniert und lässt sich mithilfe genetischer Analysen besser vorhersagen. Praktische Beispiele in der kardiovaskulären Medizin sind Warfarin und hohe Dosen von Simvastatin. Zusammengefasst werden personalisierte Ansätze in der kardiovaskulären Medizin sicher zunehmen. Dies erfordert die Entwicklung robusterer Methoden und Forschungen, die den tatsächlichen praktischen Nutzen der neuen Erkenntnisse auf den Prüfstand stellen.

Abstract

Improved therapy and prophylaxis of cardiovascular diseases have contributed to an increase in life expectancy like no other field of medicine. However, many cardiological diseases remain untreatable and standard therapies often work only in a minority of patients or cause more harm than benefit. Personalized approaches appear to be a promising solution. Monogenic heart diseases are paradigmatic for this approach and can in rare cases be treated mutation specifically. Overall, however, success remains limited. Next generation sequencing will facilitate the identification of mutations causing diseases. Cell culture models based on induced pluripotent stem cells open the perspective of individualized testing of disease severity and pharmacological or genetic therapy. In contrast to monogenic diseases genetic testing plays no practical role yet in the management of multifactorial cardiovascular diseases. Biomarkers can identify individuals with increased cardiovascular risk. Furthermore, biomarker-guided therapy represents an attractive option with troponin-guided therapy of acute coronary syndromes as a successful example. Individual responses to drugs vary and are partly determined by genes. Simple genetic analyses can improve response prediction and minimize side effects in cases such as warfarin and high doses of simvastatin. Taken together personalized approaches will gain importance in the cardiovascular field but this requires the development of better methods and research that quantifies the true value of the new knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Benjamin EJ, Rice KM, Arking DE et al (2009) Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat Genet 41:879–881

    Article  PubMed  CAS  Google Scholar 

  2. Blaufox AD, Tristani-Firouzi M, Seslar S et al (2012) Congenital long QT 3 in the pediatric population. Am J Cardiol 109:1459–1465

    Article  PubMed  Google Scholar 

  3. Giugliano RP, Desai NR, Kohli P et al (2012) Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet 380:2007–2017

    Article  PubMed  CAS  Google Scholar 

  4. Helgadottir A, Thorleifsson G, Manolescu A et al (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316:1491–1493

    Article  PubMed  CAS  Google Scholar 

  5. Ioannidis JP, Allison DB, Ball CA et al (2009) Repeatability of published microarray gene expression analyses. Nat Genet 41:149–155

    Article  PubMed  CAS  Google Scholar 

  6. Ioannidis JP, Panagiotou OA (2011) Comparison of effect sizes associated with biomarkers reported in highly cited individual articles and in subsequent meta-analyses. JAMA 305:2200–2210

    Article  PubMed  CAS  Google Scholar 

  7. Jessup M, Greenberg B, Mancini D et al (2011) Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 124:304–313

    Article  PubMed  CAS  Google Scholar 

  8. Keller T, Zeller T, Ojeda F et al (2011) Serial changes in highly sensitive troponin I assay and early diagnosis of myocardial infarction. JAMA 306:2684–2693

    Article  PubMed  CAS  Google Scholar 

  9. Klein TE, Altman RB, Eriksson N et al (2009) Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med 360:753–764

    Google Scholar 

  10. Krishna V, Diamond GA, Kaul S (2012) Do platelet function testing and genotyping improve outcome in patients treated with antithrombotic agents? The role of platelet reactivity and genotype testing in the prevention of atherothrombotic cardiovascular events remains unproven. Circulation 125:1288–1303

    Article  PubMed  Google Scholar 

  11. Lenfant C (2003) Shattuck lecture – clinical research to clinical practice – lost in translation? N Engl J Med 349:868–874

    Google Scholar 

  12. Moretti A, Bellin M, Welling A et al (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363:1397–1409

    Google Scholar 

  13. Parvez B, Chopra N, Rowan S et al (2012) A common beta1-adrenergic receptor polymorphism predicts favorable response to rate-control therapy in atrial fibrillation. J Am Coll Cardiol 59:49–56

    Google Scholar 

  14. Rau T, Dungen HD, Edelmann F et al (2012) Impact of the beta1-adrenoceptor Arg389Gly polymorphism on heart-rate responses to bisoprolol and carvedilol in heart-failure patients. Clin Pharmacol Ther 92:21–28

    Article  PubMed  CAS  Google Scholar 

  15. Rau T, Heide R, Bergmann K et al (2002) Effect of the CYP2D6 genotype on metoprolol metabolism persists during long-term treatment. Pharmacogenetics 12:465–472

    Article  PubMed  CAS  Google Scholar 

  16. Ridker PM, Danielson E, Fonseca FA et al (2008) Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 359:2195–2207

    Google Scholar 

  17. Roberts JD, Wells GA, Le May MR et al (2012) Point-of-care genetic testing for personalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised, proof-of-concept trial. Lancet 379:1705–1711

    Article  PubMed  CAS  Google Scholar 

  18. Schwabe U, Paffrath D (Hrsg) (2012) Arzneiverordnungsreport 2012. Springer, Berlin Heidelberg

  19. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  PubMed  CAS  Google Scholar 

  20. Werf C van der, Kannankeril PJ, Sacher F et al (2011) Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. J Am Coll Cardiol 57:2244–2254

    Google Scholar 

  21. Vasan RS, Glazer NL, Felix JF et al (2009) Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data. JAMA 302:168–178

    Article  PubMed  CAS  Google Scholar 

  22. Watanabe H, Chopra N, Laver D et al (2009) Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nat Med 15:380–383

    Article  PubMed  CAS  Google Scholar 

  23. Wilke RA, Ramsey LB, Johnson SG et al (2012) The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin Pharmacol Ther 92:112–117

    Article  PubMed  CAS  Google Scholar 

  24. Wuttke H, Rau T, Heide R et al (2002) Increased frequency of cytochrome P450 2D6 poor metabolizers among patients with metoprolol-associated adverse effects. Clin Pharmacol Ther 72:429–437

    Article  PubMed  CAS  Google Scholar 

  25. Yusuf S, Pais P, Afzal R et al (2009) Effects of a polypill (Polycap) on risk factors in middle-aged individuals without cardiovascular disease (TIPS): a phase II, double-blind, randomised trial. Lancet 373:1341–1351

    Article  PubMed  CAS  Google Scholar 

  26. Zhou Q, Xiao J, Jiang D et al (2011) Carvedilol and its new analogs suppress arrhythmogenic store overload-induced Ca2+ release. Nat Med 17:1003–1009

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seinen Koautor an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Eschenhagen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eschenhagen, T., Blankenberg, S. Personalisierte Therapie in der Kardiologie. Internist 54, 147–154 (2013). https://doi.org/10.1007/s00108-012-3157-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-012-3157-8

Schlüsselwörter

Keywords

Navigation