Advertisement

European Journal of Wood and Wood Products

, Volume 77, Issue 4, pp 509–516 | Cite as

Residue of açaí berry (Euterpe oleracea) management as a source of lignocellulosic material

  • Bruno Monteiro BalboniEmail author
  • João Thiago Rodrigues de Sousa
  • Milca Aires Ferreira
  • Rafael de Aguiar Rodrigues
  • Albanita Bentes Macedo
Original
  • 63 Downloads

Abstract

The management of açaí berry palm trees consists in the maintenance of a few stems per individual, which generates a large amount of waste. This study aimed to assess some mechanical, physical and anatomical properties of the material from the Euterpe oleracea stem considering its dense peripheral zone and low-density center. The compression strength and stiffness, density, size of vascular bundles, proportional area of vascular bundles and fiber length were analyzed. The peripheral zone presented very distinct properties in relation to the center. While the former is considered adequate to be used as a source of lignocellulosic material, the latter is not. The compressive strength of the peripheral zone is equivalent to some commercial Amazon timbers of similar density and higher than bamboo. A linear model confirmed density as a viable property to predict resistance on the peripheral zone. The use of E. oleracea stems can stimulate the adoption of management practices to raise the açaí berry productivity and, together with sustainable practices that contribute to the species conservation, increase the income in the Amazon region, especially for those who depend directly on the açaí fruit production. Some studies are still necessary to understand the applicability of this material, but it has shown potential for the manufacturing of high added value products, such as furniture, frames for paintings, handicrafts and as substitute of imported bamboo products.

Notes

Acknowledgements

The authors thank the Laboratory of Wood Technology—UFOPA, where all mechanical tests were realized, as well as Mr. Antônio C. F. Barbosa (IPT) and the Laboratory of Plant Anatomy—IB/USP for the great help to produce the cuttings.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. ABNT (1997) NBR7190: Projetos de Estruturas de Madeira (Projects of timber structures). ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, Rio de Janeiro, p 107Google Scholar
  2. Aguiar AGR, Martins PFS, Simões AV (2017) Efeitos da intensidade do desbaste de estipes de açaizeiros (Euterpe oleracea Mart.) nativos na composição de parcelas de produção em várzea do estuário amazônico (Effects of the intensity of the thinning of stems of açai palm (Euterpe oleracea Mart.) natives on the composition of parcels of production in the floodplain of the Amazonian estuary). Rev Cienc Agrar 60(4):358–365.  https://doi.org/10.4322/rca2709 Google Scholar
  3. Bailleres H, Hopewell G, House S, Redman A, Francis L, Ferhrmann J (2010) Cocowood processing manual. From coconut wood to quality flooring. Department of Employment, Economic Development and Innovation, BrisbaneGoogle Scholar
  4. Bakar ES, Sahri MH, H’ng PS (2008) Anatomical characteristics and utilization of oil palm wood. In: Nobuchi T, Sahri MH (eds) The formation of wood in tropical forest trees: a challenge from the perspective of functional wood anatomy. Penerbit Universiti Putra, Serdang, p 2008Google Scholar
  5. Bentes-Gama MM, Ribeiro GD, Fernandes CF, Medeiros IM (2005) Açaí (Euterpe spp.): características, formação de mudas e plantio para a produção de frutos (Açaí (Euterpe spp.): characteristics, seedling formation and plantation for fruit production). Porto Velho, Embrapa Rondônia, p 6Google Scholar
  6. Borrega M, Gibson LJ (2015) Mechanics of balsa (Ochroma pyramidale) wood. Mech Mater 84:75–90Google Scholar
  7. Cardoso-Junior CD, Aguiar DL, Batista AS, Balboni BM, Martorano LG (2017) Caule do açaizeiro (Euterpe oleracea Mart) como alternativa de isolamento térmico testado por espectroscopia infravermelho (Stem of açaizeiro (Euterpe oleracea Mart) as an alternative for thermal insulation tested with infrared spectroscopy). Congresso Técnico Científico da Engenharia e da Agronomia, Belém, p 2017Google Scholar
  8. Dubey YM, Khanduri AK, Sharma SD (2017) Physical and strength properties of Bambusa striata. J Indian Acad Wood Sci 14(2):110–114Google Scholar
  9. FAO (1994) Neglected crops: 1942 from a different perspective. FAO, Plant edn. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  10. Farias Neto JT, Oliveira MSP, Resende MDV, Rodrigues JC (2012) Parâmetros genéticos e ganhos com a seleção de progênies de Euterpe oleracea na fase juvenil (Genetic parameters and selection gains for Euterpe oleracea in juvenile phase). Cerne 18:515–521Google Scholar
  11. Fathi L, Frühwald A (2014) The role of vascular bundles on the mechanical properties of coconut palm wood. Wood Mater Sci Eng 9(4):214–223.  https://doi.org/10.1080/17480272.2014.887774 Google Scholar
  12. Franklin G (1945) Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 51(1):39–44Google Scholar
  13. Hesse L, Wagner ST, Neinhuis C (2016) Biomechanics and functional morphology of a climbing monocot. AoB Plants 8:plw005Google Scholar
  14. Homma AKO, Nogueira OL, Menezes AJEA, Carvalho JEU, Nicoli CML, Matos GB (2006) Açaí: Novos desafios e tendências (Açaí: New challenges and trends). Amazônia Ciência e Desenvolvimento 1:7–23Google Scholar
  15. IBAMA (1997) Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Madeiras Tropicais Brasileiras (Brazilian Tropical Timbers). IBAMA—LPF, Brasília, p 152Google Scholar
  16. Killmann W, Fink D (1996) Coconut palm stem processing—technical handbook. Protrade, EschbornGoogle Scholar
  17. Koman S, Feher S, Vityi A (2017) Physical and mechanical properties of Paulownia tomentosa wood planted in Hungaria. Wood Res 62(2):335–340Google Scholar
  18. Kretschmann DE (2010) Mechanical properties of wood. Wood handbook: wood as an engineering material: chapter 5. Centennial ed. General technical report FPL; GTR-190. Madison, WI: US Dept. of Agriculture, Forest Service, Forest Products Laboratory, p. 5.1-5.46Google Scholar
  19. Kubitzki K, Rudall PJ, Chase MC (1998) Systematics and evolution. In: Kubitzki K (ed) Flowering plants monocotyledons: Lilianae (except Orchidaceae). Springer, Berlin, pp 23–33Google Scholar
  20. Lim SC, Gan KS (2005) Characteristics and utilisation of oil palm stem. Timber Technol Bull 35:1–7Google Scholar
  21. Maya-Echeverry JM, Camargo-García JC, Marino-Mosquera O (2017) Características de los culmos de guadua de acuerdo al sitio y su estado de madurez (Characteristics of Guadua culms according to site and stage of maturity). ColombiaForestal 20(2):171–180Google Scholar
  22. Morris H, Plavcová L, Cvecko P, Fichtler E, Gillingham MA, Martínez-Cabrera HI, McGlinn DJ, Wheeler E, Zheng J, Ziemińska K, Jansen S (2016) A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytol 209(4):1553–1565Google Scholar
  23. Oliveira MSP, Carvalho JEU, Nascimento WMO, Müller CH (2002) Cultivo do açaizeiro para produção de frutos (Cultivation of açaí palm tree for fruit production). Belém, Embrapa Amazônia Oriental, p 18Google Scholar
  24. Parthasarathy MV, Klotz LH (1976) Palm “Wood” I: anatomical aspects. Wood Sci Technol 10:215–229Google Scholar
  25. Queiroz JAL, Mochiutti S (2012) Guia prático de Manejo de açaizais para produção de frutos (Practical guide of the management of açaí palm tree formations for fruit production). 2ª edição revista e ampliada. Embrapa, BrasíliaGoogle Scholar
  26. R Development Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  27. Rasband W (2011) Imaje J US National Institute of Health, Bethesda, 304 Maryland, USA, Available at: http://imagej.nih.gov/ij. Accessed 25 Aug 2017
  28. Rogez H (2000) Açaí: preparo, composição e melhoramento da conservação (Açaí: preparation, composition and conservation improvement). EDUFPA, BelémGoogle Scholar
  29. Ruiz-Aquino F, González-Peña MM, Valdez-Hernández JI et al (2018) Mechanical properties of wood of two Mexican oaks: relationship to selected physical properties. Eur J Wood Prod 76:69–77.  https://doi.org/10.1007/s00107-017-1168-9 Google Scholar
  30. Schmitt U, Weiner G, Liese W (1995) The fine structure of the stegmata in Calamus axillaris during maturation. IAWA J 16(1):61–68Google Scholar
  31. Sharma B et al (2015) Engineered bamboo: state of the art. Constr Mater 168(CM2):57–67Google Scholar
  32. Silva AD, Kyriakides S (2007) Compressive response and failure of balsa wood. Int J Solids Struct 44:8685–8717Google Scholar
  33. Thelandersson S, Larsen HJ (2003) Timber engineering. Wiley, Chichester, p 456Google Scholar
  34. Vallejo MI, Galeano G, Bernal R, Zuidema PA (2014) The fate of populations of Euterpe oleracea harvested for palm heart in Colombia. For Ecol Manag 318:274–284Google Scholar
  35. Yamaguchi KKL, Pereira LFR, Lamarão CV, Lima ES, Veiga-Junior VF (2015) Amazon açaí: chemistry and biological activities: a review. Food Chem 179:137–151Google Scholar
  36. Zimmerman MH, Tomlinson PB (1972) The vascular system of monocotyledonous stems. Bot Gaz 133(2):141–155Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Universidade de São PauloPiracicabaBrazil
  2. 2.Universidade Federal Do Oeste Do ParáSantarémBrazil

Personalised recommendations