European Journal of Wood and Wood Products

, Volume 77, Issue 4, pp 517–525 | Cite as

Chemical analysis and cellulose crystallinity of thermally modified Eucalyptus nitens wood from open and closed reactor systems using FTIR and X-ray crystallography

  • M. WentzelEmail author
  • A. Rolleri
  • H. Pesenti
  • H. Militz


Currently there is a growing market for high quality solid wood products in Chile made from Eucalyptus nitens. Thermal modifications have been used to obtain such products out of fast growing species. The chemical and crystallinity changes in the modified wood were investigated using diffuse reflectance FTIR spectroscopy and crystalline analysis by X-ray diffraction to analyze the difference between thermal modifications processes using pressure under wet conditions (closed system) and processes without pressure under drier conditions (open system). In general, the FTIR spectra showed differences in the degradation of the hemicelluloses in the peaks of the C=O linkages, but almost no differences in the peaks that identify the lignin structure of the wood, as it was difficult to separate the different chemical reactions due to the depolymerization of lignin only observing the bands. The degree of crystallinity showed a tendency to increase at high pressure in the closed system modifications and at temperatures above 200 °C in the open system modifications, but no significant differences at low modification pressure and temperatures. Nonetheless, there were differences in FTIR spectra and cellulose crystallinity when directly comparing modifications with the same corrected mass loss under different conditions.



The authors would like to thank the “Comisión Nacional de Investigación Científica y Tecnológica” Conicyt, through their FONDEQUIP Program, for the financial support for the acquisition of research equipment: EQM150019 “Strengthening of interdisciplinary research in materials and biomaterials, FTIR Infrared Imaging System for non-destructive evaluation of surfaces” and the EQM160152 “Attraction of high-impact International Scientific Collaboration using Advanced X-ray Diffraction techniques to integrate interdisciplinary research in the Araucanía Region”.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Akgül M, Gümüşkaya E, Korkut S (2007) Crystalline structure of heat-treated Scots pine [Pinus sylvestris L.] and Uludağ fir [Abies nordmanniana (Stev.) subsp. bornmuelleriana (Mattf.)] wood. Wood Sci Technol 41:281–289. CrossRefGoogle Scholar
  2. Alen R, Kotilainen R, Zaman A (2002) Thermochemical behavior of Norway spruce (Picea abies) at 180–225 °C. Wood Sci Technol 36:163–171. CrossRefGoogle Scholar
  3. Altgen M, Willems W, Militz H (2016) Wood degradation affected by process conditions during thermal modification of European beech in a high-pressure reactor system. Eur J Wood Prod 74:653–662. CrossRefGoogle Scholar
  4. Altgen M, Uimonen T, Rautkari L (2018) The effect of de-and re-polymerization during heat-treatment on the mechanical behavior of Scots pine sapwood under quasi-static load. Polym Degrad Stabil 147:197–205. CrossRefGoogle Scholar
  5. Batista DC, Bolzón de Muñiz GI, da Silva Oliveira JT, Paes JB, Nisgoski S (2016) Effect of the Brazilian thermal modification process on the chemical composition of Eucalyptus grandis juvenile wood: part 1: cell wall polymers and extractive contents. Maderas-Cienc Tecnol 18:273–284. Google Scholar
  6. Bhuiyan MTR, Hirai N, Sobue N (2000) Changes of crystallinity in wood cellulose by heat treatment under dried and moist conditions. J Wood Sci 46:431–436. CrossRefGoogle Scholar
  7. Bhuiyan MTR, Hirai N, Sobue N (2001) Effect of intermittent heat treatment on crystallinity in wood cellulose. J Wood Sci 47:336–341. CrossRefGoogle Scholar
  8. Boonstra MJ, Tjeerdsma B (2006) Chemical analysis of heat treated softwoods. Holz Roh Werkst 64:204–211. CrossRefGoogle Scholar
  9. Borrega M, Kärenlampi P (2008) Effect of relative humidity on thermal degradation of Norway spruce (Picea abies) wood. J Wood Sci 54:323–328. CrossRefGoogle Scholar
  10. Cheng XY, Li XJ, Xu K, Huang QT, Sun HN, Wu YQ (2017) Effect of thermal treatment on functional groups and degree of cellulose crystallinity of eucalyptus wood (Eucalyptus grandis × Eucalyptus urophylla). Forest Prod J 67:135–140. CrossRefGoogle Scholar
  11. Chow S-Z (1971) Infrared spectral characteristics and surface inactivation of wood at high temperatures. Wood Sci Technol 5:27–39. CrossRefGoogle Scholar
  12. de Cademartori PHG, Missio AL, Mattos BD, Gatto DA (2015) Effect of thermal treatments on technological properties of wood from two Eucalyptus species. An Acad Bras Cienc 87:471–481. CrossRefGoogle Scholar
  13. Dwianto W, Tanaka F, Inoue M, Norimoto M (1996) Crystallinity changes of wood by heat or steam treatment. Wood Res 83:47–49Google Scholar
  14. Esteves B, Pereira H (2009) Wood modification by heat treatment: a review. BioRes 4:370–404Google Scholar
  15. Esteves B, Domingos I, Pereira H (2007) Improvement of technological quality of eucalypt wood by heat treatment in air at 170–200 °C. Forest Prod J 57:47–52Google Scholar
  16. Esteves B, Graca J, Pereira H (2008) Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung 62:344–351. CrossRefGoogle Scholar
  17. Esteves B, Marques AV, Domingos I, Pereira H (2013) Chemical changes of heat treated pine and eucalypt wood monitored by FTIR. Maderas Cienc Tecnol 15:245–258. Google Scholar
  18. Faix O (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45:21–28. CrossRefGoogle Scholar
  19. Faix O, Böttcher JH (1992) The influence of particle size and concentration in transmission and diffuse reflectance spectroscopy of wood. Holz Roh Werkst 50:221–226. CrossRefGoogle Scholar
  20. Faix O, Meier D, Fortmann I (1990) Thermal degradation products of wood. Holz Roh Werkst 48:281–285. CrossRefGoogle Scholar
  21. Fengel D (1967) Über die Veränderungen des Holzes und seiner Komponenten im Temperaturbereich bis 200 °C—Vierte Mitteilung: Das Verhalten der Cellulose im Fichtenholz bei thermischer Behandlung [On the changes of the wood and its components within the temperature range up to 200 °C—Part IV: the behaviour of cellulose in spruce wood under thermal treatment]. Holz Roh Werkst 25:102–111. CrossRefGoogle Scholar
  22. Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Eur J Wood Prod 57:191–202. CrossRefGoogle Scholar
  23. Garrote G, Dominguez H, Parajo JC (2001) Study on the deacetylation of hemicelluloses during the hydrothermal processing of Eucalyptus wood. Holz Roh Werkst 59:53–59. CrossRefGoogle Scholar
  24. González-Peña MM, Hale MDC (2009) Colour in thermally modified wood of beech, Norway spruce and Scots pine. Part 1: colour evolution and colour changes. Holzforschung 63:385–393. Google Scholar
  25. Gonzalez-Peña MM, Curling SF, Hale MDC (2009) On the effect of heat on the chemical composition and dimensions of thermally-modified wood. Polym Degrad Stabil 94:2184–2193. CrossRefGoogle Scholar
  26. Hill CAS (2006) Wood modification: chemical, thermal and other processes. Wiley, West SussexCrossRefGoogle Scholar
  27. INFOR (2014) Mejoramiento genético de los eucaliptos en Chile [Genetic improvement of Eucalypts in Chile]. Instituto Forestal de Chile, Santiago de ChileGoogle Scholar
  28. INFOR (2015) Statistical bulletin No 154—Chilean statistical yearbook of forestry 2016. Instituto Forestal de Chile, Santiago de ChileGoogle Scholar
  29. Isogai A, Usuda M (1990) Crystallinity indexes of cellulosic materials. Sen’i Gakkaishi 46:324–329. CrossRefGoogle Scholar
  30. Kocaefe D, Poncsak S, Boluk Y (2008) Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. BioRes 3:517–537Google Scholar
  31. Kollmann F, Fengel D (1965) Changes in the chemical composition of wood by thermal treatment. Holz Roh Werkst 23:461. (In German) CrossRefGoogle Scholar
  32. Kotilainen RA, Toivanen T-J, Alén RJ (2000) FTIR monitoring of chemical changes in softwood during heating. J Wood Chem Technol 20:307–320. CrossRefGoogle Scholar
  33. Kubojima Y, Okano T, Ohta M (2000) Bending strength and toughness of heat-treated wood. J Wood Sci 46:8–15. CrossRefGoogle Scholar
  34. Mayes D, Oksanen O (2002) ThermoWood handbook. Finnish Thermowood Association, HelsinkiGoogle Scholar
  35. Metsä-Kortelainen S, Antikainen T, Viitaniemi P (2006) The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170 °C, 190 °C, 210 °C and 230 °C. Holz Roh Werkst 64:192–197. CrossRefGoogle Scholar
  36. Michell AJ, Higgins HG (2002) Infrared spectroscopy in Australian forest products research. CSIRO Forestry and Forest Products, MelbourneGoogle Scholar
  37. Militz H, Altgen M (2014) Processes and properties of thermally modified wood manufactured in Europe. In: Schultz TP, Goodell B, Nicholas DD (eds) Deterioration and protection of sustainable biomaterials. ACS Symposium Series 1158. Oxford University Press, pp 269–285Google Scholar
  38. Moharram MA, Mahmoud OM (2008) FTIR spectroscopic study of the effect of microwave heating on the transformation of cellulose I into cellulose II during mercerization. J Appl Polym Sci 107:30–36. CrossRefGoogle Scholar
  39. Muñoz F, Espinosa M, Herrera MA, Cancino J (2005) Características del crecimiento en diámetro, altura y volumen de una plantación de Eucalyptus nitens sometida a tratamientos silvícolas de poda y raleo [Growth characteristics in diameter, height, and volume of a Eucalyptus nitens plantation with different silvicultural treatment for pruning and thinning]. Bosque 26:93–99. CrossRefGoogle Scholar
  40. Nguila Inari G, Petrissans M, Gerardin P (2007) Chemical reactivity of heat-treated wood. Wood Sci Technol 41:157–168. CrossRefGoogle Scholar
  41. NISTS (2015) Standard reference material 660c: line position and line shape standard for powder diffraction (lanthanum hexaboride powder). National Institute of Standards and Technology, GaithersburgGoogle Scholar
  42. Pandey KK (1999) A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci 71:1969–1975.;2-D CrossRefGoogle Scholar
  43. Pandey KK, Theagarajan KS (1997) Analysis of wood surfaces and ground wood by diffuse reflectance (DRIFT) and photoacoustic (PAS) Fourier transform infrared spectroscopic techniques. Holz Roh Werkst 55:383–390. CrossRefGoogle Scholar
  44. Phuong LX, Shida S, Saito Y (2007) Effects of heat treatment on brittleness of Styrax tonkinensis wood. J Wood Sci 53:181–186. CrossRefGoogle Scholar
  45. Rodrigues J, Faix O, Pereira H (1998) Determination of lignin content of Eucalyptus globulus wood using FTIR spectroscopy. Holzforschung 52:46–50. CrossRefGoogle Scholar
  46. Runkel ROH (1951) Zur Kenntnis des thermoplastischen Verhaltens von Holz. Erste Mitteilung. [Information on the thermoplastic behavior of wood. First communication]. Holz Roh Werkst 9:41–53. CrossRefGoogle Scholar
  47. Seborg RM, Tarkow H, Stamm AJ (1953) Effect of heat upon the dimensional stabilisation of wood. J Forest Prod Res Soc 3:59–67Google Scholar
  48. Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. CrossRefGoogle Scholar
  49. Sivonen H, Maunu SL, Sundholm F, Jamsa S, Viitaniemi P (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56:648–654. CrossRefGoogle Scholar
  50. Spiridon I, Teaca CA, Bodîrlău R (2011) Structural changes evidenced by FTIR spectroscopy in cellulose materials after pre-treatment with ionic liquid and enzymatic hydrolysis. BioRes 6:400–413Google Scholar
  51. Stamm AJ, Hansen LA (1937) Minimizing wood shrinkage and swelling effect of heating in various gases. Ind Eng Chem Res 29:831–833. CrossRefGoogle Scholar
  52. Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576. CrossRefGoogle Scholar
  53. Tjeerdsma BF, Militz H (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh Werkst 63:102–111. CrossRefGoogle Scholar
  54. Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh Werkst 56:149–153. CrossRefGoogle Scholar
  55. Wentzel M, Fleckenstein M, Hofmann T, Militz H (2019) Relation of chemical and mechanical properties of Eucalyptus nitens wood thermally modified in open and closed systems. Wood Mater Sci Eng. 14(3):165–173. CrossRefGoogle Scholar
  56. Willems W (2009) A novel economic large-scale production technology for high quality thermally modified wood. In: Engelund F, Hill CAS, Militz H, Segerholm BK (eds). Proceedings of the 4th European Conference on Wood Modification, Stockholm, SwedenGoogle Scholar
  57. Windeisen E, Strobel C, Wegener G (2007) Chemical changes during the production of thermo-treated beech wood. Wood Sci Technol 41:523–536. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Wood Biology and Wood Products, Faculty of Forest ScienceGeorg-August-University GoettingenGöttingenGermany
  2. 2.Instituto de Bosques y Sociedad, Facultad de Ciencias Forestales y Recursos NaturalesUniversidad Austral de ChileValdiviaChile
  3. 3.Laboratorio de Cristalografía Aplicada, Facultad de IngenieríaUniversidad Católica de TemucoTemucoChile

Personalised recommendations