Advertisement

European Journal of Wood and Wood Products

, Volume 76, Issue 6, pp 1677–1683 | Cite as

A study of the deformation behaviour of veneers resulting from water storage (A methodological approach for determining the swelling characteristic using the example of European beech veneer)

  • Martin Zimmermann
  • Hendrike Raßbach
Original
  • 48 Downloads

Abstract

This article discusses the swelling-induced deformation behaviour of veneers. Impregnation tests were performed to assess the influences on the unrestrained deformation of veneers. Among others, the tests focused on a comparison of the swelling-induced deformation in consideration of influences caused by the manufacturing process for different anatomical orientations (tangential or radial veneer). For this, samples of European beech veneer (Fagus sylvatica L.) were measured under a microscope and categorised into groups of tangentially or radially sampled veneers based on the anatomical characteristics. In addition, manufacture-specific damage was documented during the slicing process and also considered for the assessment. As a result of these tests, it was proven that the influence of near-surface damage caused by the manufacture on the unrestrained deformation of veneers was significantly dominant.

Notes

References

  1. Bellair B (2012) Beschreibung des anisotropen Materialverhaltens von Rotbuchenfurnier als Basis für rechnergestützte Umformsimulationen (Description of the anisotropic material behavior of red beech veneer as a basis for computer aided forming simulations). Ph.D. thesis, Technical University Ilmenau, Germany (in German) Google Scholar
  2. Blomqvist L (2016) Laminated veneer products: shape stability and effect of enhanced formability on bond-line strength. Ph.D. thesis Linnaeus University, SwedenGoogle Scholar
  3. Buchelt B, Wagenführ A (2007) Untersuchungen zur Anisotropie der mechanischen Eigenschaften von Nussbaummaserfurnier (Juglans nigra L.). (Investigations of the anisotropy of the mechanical properties of walnut burl veneer). Holz Roh-Werkst 65(5):407–409 (in German) CrossRefGoogle Scholar
  4. Buchelt B, Wagenführ A (2008) The mechanical behaviour of veneer subjected to bending and tensile loads. Holz Roh-Werkst 66(4):289–294CrossRefGoogle Scholar
  5. Dietzel A (2017) Modellgestützte Ermittlung und Bewertung der Formgebungsgrenzen von Rotbuchenfurnier (Model-based determination and evaluation of the shaping limits of beech veneer). Ph.D. thesis, Technical University Ilmenau, Germany (in German) Google Scholar
  6. Dogu D, Grabner M (2010) A staining method for determining severity of tension wood. Turk J Agric For 34(5):381–392Google Scholar
  7. Dupleix A, Denaud L-E, Bleron L, Marchal R, Hughes M (2013) The effect of log heating temperature on the peeling process and veneer quality: beech, birch, and spruce case studies. Eur J Wood Prod 71(2):163–171CrossRefGoogle Scholar
  8. Fortuin G (2003) Anwendung mathematischer Modelle zur Beschreibung der technischen Konvektionstrocknung von Schnitt-holz (Application of mathematical models to describe the technical convection drying of sawn timber). Ph.D. thesis, University Hamburg, Germany (in German) Google Scholar
  9. Kollmann F (1982) Anatomie und Pathologie, Chemie, Physik, Elastizität und Festigkeit; Band 1: Technologie des Holzes und der Holzwerkstoffe (Anatomy and pathology, chemistry, physics, elasticity and strength; volume 1: technology of wood and wood-based materials), 2nd edn. Springer, Berlin (in German) Google Scholar
  10. Krischer O, Kast W (1992) Die wissenschaftlichen Grundlagen der Trocknungstechnik (The scientific fundamentals of drying technology), 3rd edn. Springer, Berlin (in German) Google Scholar
  11. McMillin CW (1958) The relation of mechanical properties of wood and nosebar pressure in the production of veneer. For Prod J 8(1):23–32Google Scholar
  12. Mehlin I (2001) Trocknungsverhalten von Tannenschnittholz (Abies alba Mill.) aus dem Schwarzwald (Drying behavior of fir sawn timber (Abies alba Mill.) from the Black Forest). Ph.D. thesis, University Freiburg, Germany (in German) Google Scholar
  13. Niemz P (1993) Physik des Holzes und der Holzwerkstoffe. Holz. In: Anatomie—Chemie—Physik (Physics of wood and wood-based materials. Wood: anatomy—chemistry—physics). DRW-Verlag, Leinfelden-Echterdingen (in German) Google Scholar
  14. Ormarsson S, Sandberg D (2007) Numerical simulation of hot-pressed veneer products: forming—spring back—distortion. Wood Mater Sci Eng 2(3–4):130–137CrossRefGoogle Scholar
  15. Schaffrath J (2015) Untersuchungen zu Feuchtetransportvorgängen und feuchteinduzierten Verformungen sowie Spannungen bei Betrachtung verschiedener Holzarten und unterschiedlicher klimatischer Randbedingungen (Investigations on moisture transport processes and moisture-induced deformations as well as stresses when considering different types of wood and different climatic boundary conditions). Ph.D. thesis, Technical University Munich, Germany (in German) Google Scholar
  16. Siau JF (1984) Transport processes in wood. Springer, BerlinCrossRefGoogle Scholar
  17. Skaar C (1972) Water in wood. Syracuse University Press, SyracuseGoogle Scholar
  18. Sonderegger WU (2010) Experimental and theoretical investigations on the heat and water transport in wood and wood-based materials. Ph.D. thesis, ETH Zürich, SwitzerlandGoogle Scholar
  19. Tarmian A, Remond R, Faezipour M, Karimi A, Perré P (2009) Reaction wood drying kinetics: tension wood in Fagus sylvatica and compression wood in Picea abies. Wood Sci Technol 43(1):113–130CrossRefGoogle Scholar
  20. Thibaut B, Beauchêne J (2004) Links between wood machining phenomena and wood mechanical properties: the case of 0°/90° orthogonal cutting of green wood. In: Proceedings of the 2nd international symposium on wood machining. BOKU—University of Natural Resources and Applied Life Sciences, pp 149–160Google Scholar
  21. Ugolev BN (1976) General laws of wood deformation and rheological propertions of hardwood. Wood Sci Technol 10(3):169–181CrossRefGoogle Scholar
  22. Vratuša S, Kariž M, Ayrilmis N, Kuzman MK (2017) Finite element simulations of the loading and deformation of plywood seat shells. Eur J Wood Prod 75(5):729–738CrossRefGoogle Scholar
  23. Wagenführ A, Tobisch S, Emmler R, Buchelt B, Schulz T (2011) Informationsschrift “Furnier im Innenausbau”, Definitionen-Eigenschaften-Verarbeitung-Anwendungsbeispiele (Information paper “interior veneer”, definitions-properties-processing-application examples). Hrsg. von Initiative Furnier und Natur e.V. (IFN), TU Dresden-Professur für Holz-u. Faserwerkstofftechnik und Institut für Holztechnologie Dresden gGmbH (IHD). Selbstverlag, Technical University Bad Honnef/Dresden, Dresden (in German) Google Scholar
  24. Welling J (1987) Die Erfassung von Trocknungsspannungen während der Kammertrocknung von Schnittholz (The detection of drying stresses during the chamber drying of fir sawn timber). Ph.D. thesis, University Hamburg (in German) Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hochschule Schmalkalden, Fakultät MaschinenbauSchmalkaldenGermany

Personalised recommendations