Advertisement

HNO

pp 1–5 | Cite as

Why study inner ear hair cell mitochondria?

  • J. Lesus
  • K. Arias
  • J. Kulaga
  • S. Sobkiv
  • A. Patel
  • V. Babu
  • A. Kambalyal
  • M. Patel
  • F. Padron
  • P. Mozaffari
  • A. Jayakumar
  • L. Ghatalah
  • N. Laban
  • R. Bahari
  • G. Perkins
  • A. LysakowskiEmail author
Leitthema

Abstract

In several systems of the body (muscle, liver, nerves), new studies have examined the internal structure of mitochondria and brought to light striking new findings about how mitochondria are constructed and how their structure affects cell function. In the inner ear field, however, we have little structural knowledge about hair cell and supporting cell mitochondria, and virtually none about mitochondrial subtypes or how they function in health and disease. The need for such knowledge is discussed in this short review.

Keywords

Cochlea Deafness Vestibular disorders Ototoxic aminoglycoside antibiotics mtDNA 

Warum sollten die Mitochondrien der Innenohr-Haarzellen untersucht werden?

Zusammenfassung

In mehreren Systemen des Körpers (Muskeln, Leber, Nerven) wurden im Rahmen neuer Studien die innere Struktur der Mitochondrien untersucht und aufschlussreiche neue Erkenntnisse darüber gewonnen, wie Mitochondrien aufgebaut sind und wie ihre Struktur die Zellfunktion beeinflusst. Im Innenohrbereich gibt es jedoch wenig strukturelles Wissen über Mitochondrien von Haarzellen und Stützzellen, und praktisch kein Wissen über mitochondriale Subtypen oder deren Funktion bei Gesundheit und Krankheit. Der Bedarf an solchem Wissen wird in diesem kurzen Überblick diskutiert.

Schlüsselwörter

Cochlea Taubheit Vestibuläre Störungen Ototoxische Aminoglykosidantibiotika mtDNA 

Notes

Funding

Research funding support was provided by the National Institutes of Health (specifically the National Institute of Deafness and Communication Disorders), grant number NIH R21-DC013181.

Compliance with ethical guidelines

Conflict of interest

J. Lesus, K. Arias, J. Kulaga, S. Sobkiv, A. Patel, V. Babu, A. Kambalyal, M. Patel, F. Padron, P. Mozaffari, A. Jayakumar, L. Ghatalah, N. Laban, R. Bahari, G. Perkins, and A. Lysakowski declare that they have no competing interests.

In experiments involving animals, all institutional and international guidelines for the care and use of laboratory animals were followed. Animal protocols were reviewed and approved by the IACUC for University of Illinois at Chicago.

References

  1. 1.
    Alharazneh A, Luk L, Huth M et al (2011) Functional hair cell mechanotransducer channels are required for aminoglycoside ototoxicity. PLoS ONE 6:e22347CrossRefGoogle Scholar
  2. 2.
    Anniko M, Bagger-Sjöbäck D (1984) The stria vascularis. In: Friedmann I, Ballantyne J (eds) Ultrastructural atlas of the inner ear. Butterworth & Co, London, pp 184–208Google Scholar
  3. 3.
    Baird RA, Burton MD, Lysakowski A et al (2000) Hair cell recovery in mitotically blocked cultures of the bullfrog saccule. Proc Natl Acad Sci Usa 97:11722–11729CrossRefGoogle Scholar
  4. 4.
    Barbot M, Meinecke M (2016) Reconstitutions of mitochondrial inner membrane remodeling. J Struct Biol 196:20–28CrossRefGoogle Scholar
  5. 5.
    Beurg M, Nam JH, Chen Q et al (2010) Calcium balance and mechanotransduction in rat cochlear hair cells. J Neurophysiol 104:18–34CrossRefGoogle Scholar
  6. 6.
    Carey J (2004) Intratympanic gentamicin for the treatment of Meniere’s disease and other forms of peripheral vertigo. Otolaryngol Clin North Am 37:1075–1090CrossRefGoogle Scholar
  7. 7.
    Collins PW (1988) Synergistic interactions of gentamicin and pure tones causing cochlear hair cell loss in pigmented guinea pigs. Hear Res 36:249–259CrossRefGoogle Scholar
  8. 8.
    Daems WT, Wisse E (1966) Shape and attachment of the cristae mitochondriales in mouse hepatic cell mitochondria. J Ultrastruct Res 16:123–140CrossRefGoogle Scholar
  9. 9.
    Darrouzet J, De LS (1962) The internal ear, kanamycin and acoustic trauma. Experimental study. Rev Laryngol Otol Rhinol 83:781–806 [in French]Google Scholar
  10. 10.
    Ding D, He J, Allman BL et al (2011) Cisplatin ototoxicity in rat cochlear organotypic cultures. Hear Res 282:196–203CrossRefGoogle Scholar
  11. 11.
    Ding D, Jin X, Zhao J (1995) Accumulation sites of kanamycin in cochlear basal membrane cells. Zhonghua Er Bi Yan Hou Ke Za Zhi 30:323–325 [in Chinese]PubMedGoogle Scholar
  12. 12.
    Gale JE, Meyers JR, Periasamy A et al (2002) Survival of bundleless hair cells and subsequent bundle replacement in the bullfrog’s saccule. J Neurobiol 50:81–92CrossRefGoogle Scholar
  13. 13.
    Huth ME, Ricci AJ, Cheng AG (2011) Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection. Int J Otolaryngol 2011:937861CrossRefGoogle Scholar
  14. 14.
    Iwasaki S, Egami N, Fujimoto C et al (2011) The mitochondrial A3243G mutation involves the peripheral vestibule as well as the cochlea. Laryngoscope 121:1821–1824CrossRefGoogle Scholar
  15. 15.
    Justo R, Oliver J, Gianotti M (2005) Brown adipose tissue mitochondrial subpopulations show different morphological and thermogenic characteristics. Mitochondrion 5:45–53CrossRefGoogle Scholar
  16. 16.
    Kimura RS (1984) Sensory and accessory epithelia of the cochlea. In: Friedemann I, Ballantyne J (eds) Ultrastructural atlas of the inner ear. Butterworth & Co, London, pp 101–132Google Scholar
  17. 17.
    Kokotas H, Petersen MB, Willems PJ (2007) Mitochondrial deafness. Clin Genet 71:379–391CrossRefGoogle Scholar
  18. 18.
    Lee JS, Kang SU, Hwang HS et al (2010) Epicatechin protects the auditory organ by attenuating cisplatin-induced ototoxicity through inhibition of ERK. Toxicol Lett 199:308–316CrossRefGoogle Scholar
  19. 19.
    Lesnefsky EJ, Hoppel CL (2003) Ischemia-reperfusion injury in the aged heart: role of mitochondria. Arch Biochem Biophys 420:287–297CrossRefGoogle Scholar
  20. 20.
    Lesnefsky EJ, Tandler B, Ye J et al (1997) Myocardial ischemia decreases oxidative phosphorylation through cytochrome oxidase in subsarcolemmal mitochondria. Am J Physiol 273:H1544–H1554PubMedGoogle Scholar
  21. 21.
    Li H, Wang Q, Steyger PS (2011) Acoustic trauma increases cochlear and hair cell uptake of gentamicin. PLoS ONE 6:e19130CrossRefGoogle Scholar
  22. 22.
    Lopez I, Honrubia V, Lee SC et al (1997) Quantification of the process of hair cell loss and recovery in the chinchilla crista ampullaris after gentamicin treatment. Int J Dev Neurosci 15:447–461CrossRefGoogle Scholar
  23. 23.
    Lyford-Pike S, Vogelheim C, Chu E et al (2007) Gentamicin is primarily localized in vestibular type I hair cells after intratympanic administration. J Assoc Res Otolaryngol 8:497–508CrossRefGoogle Scholar
  24. 24.
    Lysakowski A, Goldberg JM (1997) A regional ultrastructural analysis of the cellular and synaptic architecture in the chinchilla cristae ampullares. J Comp Neurol 389:419–443CrossRefGoogle Scholar
  25. 25.
    Mangiardi DA, Mclaughlin-Williamson K, May KE et al (2004) Progression of hair cell ejection and molecular markers of apoptosis in the avian cochlea following gentamicin treatment. J Comp Neurol 475:1–18CrossRefGoogle Scholar
  26. 26.
    Nakashima T, Teranishi M, Hibi T et al (2000) Vestibular and cochlear toxicity of aminoglycosides—a review. Acta Otolaryngol 120:904–911CrossRefGoogle Scholar
  27. 27.
    Nicotera TM, Hu BH, Henderson D (2003) The caspase pathway in noise-induced apoptosis of the chinchilla cochlea. J Assoc Res Otolaryngol 4:466–477CrossRefGoogle Scholar
  28. 28.
    Owens KN, Cunningham DE, Macdonald G et al (2007) Ultrastructural analysis of aminoglycoside-induced hair cell death in the zebrafish lateral line reveals an early mitochondrial response. J Comp Neurol 502:522–543CrossRefGoogle Scholar
  29. 29.
    Palmer JW, Tandler B, Hoppel CL (1977) Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 252:8731–8739PubMedGoogle Scholar
  30. 30.
    Perkins G, Renken C, Martone ME et al (1997) Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J Struct Biol 119:260–272CrossRefGoogle Scholar
  31. 31.
    Perkins GA, Ellisman MH, Fox DA (2003) Three-dimensional analysis of mouse rod and cone mitochondrial cristae architecture: bioenergetic and functional implications. Mol Vis 9:60–73PubMedGoogle Scholar
  32. 32.
    Perkins GA, Tjong J, Brown JM et al (2010) The micro-architecture of mitochondria at active zones: electron tomography reveals novel anchoring scaffolds and cristae structured for high-rate metabolism. J Neurosci 30:1015–1026CrossRefGoogle Scholar
  33. 33.
    Pyun JH, Kang SU, Hwang HS et al (2011) Epicatechin inhibits radiation-induced auditory cell death by suppression of reactive oxygen species generation. Neuroscience 199:410–420CrossRefGoogle Scholar
  34. 34.
    Rabl R, Soubannier V, Scholz R et al (2009) Formation of cristae and crista junctions in mitochondria depends on antagonism between Fcj1 and Su e/g. J Cell Biol 185:1047–1063CrossRefGoogle Scholar
  35. 35.
    Rampelt H, Zerbes RM, Van Der Laan M et al (2017) Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics. Biochim Biophys Acta Mol Cell Res 1864:737–746CrossRefGoogle Scholar
  36. 36.
    Riva A, Tandler B, Loffredo F et al (2005) Structural differences in two biochemically defined populations of cardiac mitochondria. Am J Physiol Heart Circ Physiol 289:H868–H872CrossRefGoogle Scholar
  37. 37.
    Royer SM, Kinnamon JC (1988) Ultrastructure of mouse foliate taste buds: synaptic and nonsynaptic interactions between taste cells and nerve fibers. J Comp Neurol 270:11–24CrossRefGoogle Scholar
  38. 38.
    Schorr S, Van Der Laan M (2018) Integrative functions of the mitochondrial contact site and cristae organizing system. Semin Cell Dev Biol 76:191–200CrossRefGoogle Scholar
  39. 39.
    Spicer SS, Qu C, Smythe N et al (2007) Mitochondria-activated cisternae generate the cell specific vesicles in auditory hair cells. Hear Res 233:40–45CrossRefGoogle Scholar
  40. 40.
    Spoendlin H (1966) The organization of the cochlear receptor. Fortschr Hals Nasen Ohrenheilkd 13:1–227PubMedGoogle Scholar
  41. 41.
    Steyger PS, Peters SL, Rehling J et al (2003) Uptake of gentamicin by bullfrog saccular hair cells in vitro. J Assoc Res Otolaryngol 4:565–578CrossRefGoogle Scholar
  42. 42.
    Usami S, Abe S, Akita J et al (2000) Prevalence of mitochondrial gene mutations among hearing impaired patients. J Med Genet 37:38–40CrossRefGoogle Scholar
  43. 43.
    Van Der Laan M, Bohnert M, Wiedemann N et al (2012) Role of MINOS in mitochondrial membrane architecture and biogenesis. Trends Cell Biol 22:185–192CrossRefGoogle Scholar
  44. 44.
    Vranceanu F, Perkins GA, Terada M et al (2012) Striated organelle, a cytoskeletal structure positioned to modulate hair-cell transduction. Proc Natl Acad Sci USA 109:4473–4478CrossRefGoogle Scholar
  45. 45.
    Walker PD, Barri Y, Shah SV (1999) Oxidant mechanisms in gentamicin nephrotoxicity. Ren Fail 21:433–442CrossRefGoogle Scholar
  46. 46.
    Wollweber F, Von Der Malsburg K, Van Der Laan M (2017) Mitochondrial contact site and cristae organizing system: A central player in membrane shaping and crosstalk. Biochim Biophys Acta Mol Cell Res 1864:1481–1489CrossRefGoogle Scholar
  47. 47.
    Zick M, Rabl R, Reichert AS (2009) Cristae formation-linking ultrastructure and function of mitochondria. Biochim Biophys Acta 1793:5–19CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • J. Lesus
    • 1
  • K. Arias
    • 2
  • J. Kulaga
    • 1
  • S. Sobkiv
    • 2
  • A. Patel
    • 1
  • V. Babu
    • 2
  • A. Kambalyal
    • 3
  • M. Patel
    • 2
  • F. Padron
    • 2
  • P. Mozaffari
    • 3
  • A. Jayakumar
    • 2
  • L. Ghatalah
    • 2
  • N. Laban
    • 2
  • R. Bahari
    • 2
  • G. Perkins
    • 4
  • A. Lysakowski
    • 1
    • 5
    Email author
  1. 1.Dept. of Anatomy and Cell BiologyUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Dept. of Biological SciencesUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Dept. of EconomicsUniversity of Illinois at ChicagoChicagoUSA
  4. 4.National Center for Microscopy and Imaging Research (NCMIR)University of CaliforniaSan Diego, La JollaUSA
  5. 5.Dept. of OtolaryngologyUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations