Advertisement

HNO

pp 1–12 | Cite as

Histaminrezeptoren bei chronisch-entzündlichen Erkrankungen der Nase und Nasennebenhöhlen

  • L. KlimekEmail author
  • I. Casper
  • B. Wollenberg
  • R. Stauber
  • M. Koennecke
CME
  • 39 Downloads

Zusammenfassung

Hintergrund

Die Freisetzung von Histamin aus Mastzellen und Basophilen bei chronisch-entzündlichen Erkrankungen von Nase und Nasennebenhöhlen wurde bei allergischen und nichtallergischen Prozessen nachgewiesen.

Methodik

Es erfolgte eine selektive Literaturrecherche in PubMed und Medline, zusätzlich wurden Publikationen in deutschsprachigen Zeitschriften analysiert.

Ergebnisse

Die Histaminrezeptoren H1–H4 spielen bei entzündlichen Erkrankungen im HNO-Bereich eine Rolle. Wenig beachtet wurde bisher der Histaminrezeptorsubtyp 4 (H4R), der v. a. bei chronischen Entzündungen auf Immunzellen funktionell exprimiert wird. Die Stimulation des H4R beeinflusst die Zytokin- und Chemokinfreisetzung sowie das Migrationsverhalten dieser Immunzellen. In Tiermodellen wurde eine Reduktion der Entzündungssymptome und des Juckreizes nach Blockade des H4R registriert.

Schlussfolgerungen

Der H4R ist für die Pathogenese chronisch-entzündlicher Erkrankungen entscheidend und könnte zukünftig eine therapeutische Zielstruktur darstellen.

Schlüsselwörter

Rhinitis Sinusitis Mastzellen Basophile Granulozyten Histamin 

Histamine receptors in chronic inflammatory diseases of the nose and paranasal sinuses

Abstract

Background

Release of histamine from mast cells and basophils in inflammatory diseases of the nose and paranasal sinuses has been demonstrated in allergic and non-allergic processes.

Methods

A selective literature search was conducted in PubMed and Medline, and publications in German-language journals were additionally analyzed.

Results

The histamine receptors H1–H4 play a role in otorhinolaryngologic inflammatory diseases. To date, the histamine receptor subtype 4 (H4R), which is functionally expressed by immune cells in chronic inflammatory diseases, has received little attention. Stimulation of H4R influences the release of cytokines and chemokines as well as the migration behavior of immune cells. In animal models blockade of H4R reduced inflammation symptoms and pruritus.

Conclusions

H4R plays a key role in the pathogenesis of chronic inflammatory diseases and may represent an interesting future therapeutic target.

Keywords

Rhinitis Sinusitis Mast cells Basophils Histamine 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

L. Klimek, I. Casper, B. Wollenberg, R. Stauber und M. Koennecke geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Bergmann KC, Heinrich J, Niemann H (2016) Aktueller Stand zur Verbreitung von Allergien in Deutschland – Positionspapier der Kommission Umweltmedizin am Robert Koch Institut. Allergo J 25(1):22–26Google Scholar
  2. 2.
    Bergmann KC (2016) Wetterbedingungen und Klimawandel nehmen Einfluss auf Allergien. Allergo J 25(5):33–41Google Scholar
  3. 3.
    Ring J et al (2014) Guideline for acute therapy and management of anaphylaxis: S2 Guideline of the German Society for Allergology and Clinical Immunology (DGAKI), the Association of German Allergologists (AeDA), the Society of Pediatric Allergy and Environmental Medicine (GPA), the German Academy of Allergology and Environmental Medicine (DAAU), the German Professional Association of Pediatricians (BVKJ), the Austrian Society for Allergology and Immunology (ÖGAI), the Swiss Society for Allergy and Immunology (SGAI), the German Society of Anaesthesiology and Intensive Care Medicine (DGAI), the German Society of Pharmacology (DGP), the German Society for Psychosomatic Medicine (DGPM), the German Working Group of Anaphylaxis Training and Education (AGATE) and the patient organization German Allergy and Asthma Association (DAAB). Allergo J Int 23(3):96–112PubMedPubMedCentralGoogle Scholar
  4. 4.
    Windaus A, Vogt W (1907) Synthese des Imidazoläthylamids. Chem Ber 41:3691–3695.  https://doi.org/10.1002/cber.190704003164 Google Scholar
  5. 5.
    Parsons ME, Ganellin CR (2006) Histamine and its receptors. Br J Pharmacol 147(Suppl 1):S127–S135PubMedPubMedCentralGoogle Scholar
  6. 6.
    Riley JF, West GB (1952) Histamine in tissue mast cells. J Physiol (Lond) 117(4):72P–73PGoogle Scholar
  7. 7.
    Raap U, Sumbayev VV, Gibbs BF (2015) The role of basophils in allergic inflammation. Allergo J 24(5):28Google Scholar
  8. 8.
    el-Lati SG, Dahinden CA, Church MK (1994) Complement peptides C3a- and C5a-induced mediator release from dissociated human skin mast cells. J Invest Dermatol 102(5):803–806PubMedGoogle Scholar
  9. 9.
    Dvorak AM (2005) Ultrastructural studies of human basophils and mast cells. J Histochem Cytochem 53(9):1043–1070PubMedGoogle Scholar
  10. 10.
    Thurmond RL, Gelfand EW, Dunford PJ (2008) The role of histamine H1 and H4 receptors in allergic inflammation: The search for new antihistamines. Nat Rev Drug Discov 7(1):41–53PubMedGoogle Scholar
  11. 11.
    Staubach P (2018) Urtikaria – Update zu Diagnostik, Therapie und Differenzialdiagnosen. Allergo J 27(1):42Google Scholar
  12. 12.
    Klimek L et al (2017) Visual analogue scales (VAS): Measuring instruments for the documentation of symptoms and therapy monitoring in cases of allergic rhinitis in everyday health care: Position Paper of the German Society of Allergology (AeDA) and the German Society of Allergy and Clinical Immunology (DGAKI), ENT Section, in collaboration with the working group on Clinical Immunology, Allergology and Environmental Medicine of the German Society of Otorhinolaryngology, Head and Neck Surgery (DGHNOKHC). Allergo J Int 26(1):16–24PubMedPubMedCentralGoogle Scholar
  13. 13.
    Lewis T, Grant RT (1924) Vascular reactions of the skin to injury. Part II. The liberation of histamine-like substance in the injured skin, underlying cause of factitious urticaria and wheals produced by burning and observations upon the nervous control of certain skin reactions. Heart 11(3):209–265Google Scholar
  14. 14.
    Zampeli E, Tiligada E (2009) The role of histamine H4 receptor in immune and inflammatory disorders. Br J Pharmacol 157(1):24–33PubMedPubMedCentralGoogle Scholar
  15. 15.
    Simon D et al (2017) Current concepts in eosinophilic esophagitis. Allergo J Int 26(7):258–266PubMedPubMedCentralGoogle Scholar
  16. 16.
    Schwartz JC, Pollard H, Quach TT (1980) Histamine as a neurotransmitter in mammalian brain: Neurochemical evidence. J Neurochem 35(1):26–33PubMedGoogle Scholar
  17. 17.
    Schweitzer A, Knauer SK, Stauber RH (2008) Therapeutic potential of nuclear receptors. Expert Opin Ther Pat 18:861–888Google Scholar
  18. 18.
    Schweitzer A, Knauer SK, Stauber RH (2010) Nuclear receptors in head and neck cancer: Current knowledge and perspectives. Int J Cancer 126(4):801–809PubMedGoogle Scholar
  19. 19.
    Seifert R, Wenzel-Seifert K (2002) Constitutive activity of G‑protein-coupled receptors: Cause of disease and common property of wild-type receptors. Naunyn Schmiedebergs Arch Pharmacol 366(5):381–416PubMedGoogle Scholar
  20. 20.
    Greaves MW, National Skin Centre Singapore Singapore (2005) Antihistamines in dermatology. Skin Pharmacol Physiol 18(5):220–229PubMedGoogle Scholar
  21. 21.
    Meyer U (2004) „Fast könnte man ein Indikations-ABC anlegen“. Die Geschichte der Antihistaminika. Pharm Unserer Zeit 33(2):86–91PubMedGoogle Scholar
  22. 22.
    Deutsche Agentur für Health Technology Assessment (Köln), Werfel T (2006) Therapie der Neurodermitis, 1. Aufl. Health Technology Assessment, Bd. 46. DIMDI, KölnGoogle Scholar
  23. 23.
    Shamizadeh S, Brockow K, Ring J (2014) Rupatadine: Efficacy and safety of a non-sedating antihistamine with PAF-antagonist effects. Allergo J Int 23(3):87–95PubMedPubMedCentralGoogle Scholar
  24. 24.
    Black JW et al (1972) Definition and antagonism of histamine H 2 -receptors. Nature 236(5347):385–390PubMedGoogle Scholar
  25. 25.
    Seifert R et al (2013) Molecular and cellular analysis of human histamine receptor subtypes. Trends Pharmacol Sci 34(1):33–58PubMedGoogle Scholar
  26. 26.
    Lin T‑K et al (2013) Topical antihistamines display potent anti-inflammatory activity linked in part to enhanced permeability barrier function. J Invest Dermatol 133(2):469–478PubMedGoogle Scholar
  27. 27.
    Werfel T et al (2009) Atopic dermatitis: S2 guidelines. J Dtsch Dermatol Ges 7(Suppl 1):S1–S46PubMedGoogle Scholar
  28. 28.
    Arrang JM et al (1987) Highly potent and selective ligands for histamine H3-receptors. Nature 327(6118):117–123PubMedGoogle Scholar
  29. 29.
    Sander K, Kottke T, Stark H (2008) Histamine H3 receptor antagonists go to clinics. Biol Pharm Bull 31(12):2163–2181PubMedGoogle Scholar
  30. 30.
    Morse KL et al (2001) Cloning and characterization of a novel human histamine receptor. J Pharmacol Exp Ther 296(3):1058–1066PubMedGoogle Scholar
  31. 31.
    Nakamura T et al (2000) Molecular cloning and characterization of a new human histamine receptor, HH4R. Biochem Biophys Res Commun 279(2):615–620PubMedGoogle Scholar
  32. 32.
    Oda T et al (2000) Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. J Biol Chem 275(47):36781–36786PubMedGoogle Scholar
  33. 33.
    Gutzmer R et al (2009) The histamine H4 receptor is functionally expressed on T(H)2 cells. J Allergy Clin Immunol 123(3):619–625PubMedGoogle Scholar
  34. 34.
    Glatzer F et al (2013) Histamine induces proliferation in keratinocytes from patients with atopic dermatitis through the histamine 4 receptor. J Allergy Clin Immunol 132(6):1358–1367PubMedPubMedCentralGoogle Scholar
  35. 35.
    Gschwandtner M et al (2011) The histamine H4 receptor is highly expressed on plasmacytoid dendritic cells in psoriasis and histamine regulates their cytokine production and migration. J Invest Dermatol 131(8):1668–1676PubMedGoogle Scholar
  36. 36.
    Simon T et al (2012) Asthma endophenotypes and polymorphisms in the histamine receptor HRH4 gene. Int Arch Allergy Immunol 159(2):109–120PubMedGoogle Scholar
  37. 37.
    Yu B et al (2010) Polymorphisms in human histamine receptor H4 gene are associated with atopic dermatitis. Br J Dermatol 162(5):1038–1043PubMedGoogle Scholar
  38. 38.
    Yu B et al (2010) Copy number variations of the human histamine H4 receptor gene are associated with systemic lupus erythematosus. Br J Dermatol 163(5):935–940PubMedGoogle Scholar
  39. 39.
    Cowden JM et al (2009) The histamine H4 receptor mediates inflammation and pruritus in Th2-dependent dermal inflammation. J Invest Dermatol 130(4):1023–1033PubMedGoogle Scholar
  40. 40.
    Dunford PJ et al (2006) Histamine H4 receptor antagonists are superior to traditional antihistamines in the attenuation of experimental pruritus. J Allergy Clin Immunol 119(1):176–183PubMedGoogle Scholar
  41. 41.
    Rossbach K et al (2008) Histamine H4 receptor antagonism reduces hapten-induced scratching behaviour but not inflammation. Exp Dermatol 18(1):57–63PubMedGoogle Scholar
  42. 42.
    Wahlgren CF, Hägermark O, Bergström R (1990) The antipruritic effect of a sedative and a non-sedative antihistamine in atopic dermatitis. Br J Dermatol 122(4):545–551PubMedGoogle Scholar
  43. 43.
    Janssens AS et al (2005) Mast cell distribution in normal adult skin. J Clin Pathol 58(3):285–289PubMedPubMedCentralGoogle Scholar
  44. 44.
    Ständer S, Steinhoff M (2002) Pathophysiology of pruritus in atopic dermatitis: An overview. Exp Dermatol 11(1):12–24PubMedGoogle Scholar
  45. 45.
    Gutzmer R et al (2011) Pathogenetic and therapeutic implications of the histamine H4 receptor in inflammatory skin diseases and pruritus. Front Biosci (Schol Ed) 3:985–994Google Scholar
  46. 46.
    Mommert S et al (2011) The role of the histamine H4 receptor in atopic dermatitis. Curr Allergy Asthma Rep 11(1):21–28PubMedGoogle Scholar
  47. 47.
    Werfel T (2009) The role of leukocytes, keratinocytes, and allergen-specific IgE in the development of atopic dermatitis. J Invest Dermatol 129(8):1878–1891PubMedGoogle Scholar
  48. 48.
    Wittmann M, Werfel T (2006) Interaction of keratinocytes with infiltrating lymphocytes in allergic eczematous skin diseases. Curr Opin Allergy Clin Immunol 6(5):329–334PubMedGoogle Scholar
  49. 49.
    Giustizieri ML et al (2004) H1 histamine receptor mediates inflammatory responses in human keratinocytes. J Allergy Clin Immunol 114(5):1176–1182PubMedGoogle Scholar
  50. 50.
    Kanda N, Watanabe S (2003) Histamine enhances the production of nerve growth factor in human keratinocytes. J Invest Dermatol 121(3):570–577PubMedGoogle Scholar
  51. 51.
    Gschwandtner M et al (2008) Histamine upregulates keratinocyte MMP-9 production via the histamine H1 receptor. J Invest Dermatol 128(12):2783–2791PubMedGoogle Scholar
  52. 52.
    Gschwandtner M et al (2013) Histamine suppresses epidermal keratinocyte differentiation and impairs skin barrier function in a human skin model. Allergy 68(1):37–47PubMedGoogle Scholar
  53. 53.
    Shiraishi Y et al (2013) Sequential engagement of FcεRI on mast cells and basophil histamine H(4) receptor and FcεRI in allergic rhinitis. J Immunol 190(2):539–548PubMedGoogle Scholar
  54. 54.
    Wang Y et al (2018) P‑FN12, an H4R-based epitope vaccine screened by phage display, regulates the Th1/Th2 balance in rat allergic rhinitis. Mol Ther Methods Clin Dev 11:83–91PubMedPubMedCentralGoogle Scholar
  55. 55.
    Hofstra CL et al (2003) Histamine H4 receptor mediates chemotaxis and calcium mobilization of mast cells. J Pharmacol Exp Ther 305(3):1212–1221PubMedGoogle Scholar
  56. 56.
    Wakahara K et al (2012) Human basophils interact with memory T cells to augment Th17 responses. Blood 120(24):4761–4771PubMedGoogle Scholar
  57. 57.
    Kapp A (1993) The role of eosinophils in the pathogenesis of atopic dermatitis—Eosinophil granule proteins as markers of disease activity. Allergy 48(1):1–5PubMedGoogle Scholar
  58. 58.
    Ling P et al (2004) Histamine H4 receptor mediates eosinophil chemotaxis with cell shape change and adhesion molecule upregulation. Br J Pharmacol 142(1):161–171PubMedPubMedCentralGoogle Scholar
  59. 59.
    Reher TM et al (2012) Incomplete activation of human eosinophils via the histamine H4-receptor: Evidence for ligand-specific receptor conformations. Biochem Pharmacol 84(2):192–203PubMedGoogle Scholar
  60. 60.
    Dijkstra D et al (2008) Human inflammatory dendritic epidermal cells express a functional histamine H4 receptor. J Invest Dermatol 128(7):1696–1703PubMedGoogle Scholar
  61. 61.
    Gschwandtner M et al (2010) Murine and human Langerhans cells express a functional histamine H4 receptor: Modulation of cell migration and function. Allergy 65(7):840–849PubMedGoogle Scholar
  62. 62.
    Dijkstra D et al (2007) Histamine downregulates monocyte CCL2 production through the histamine H4 receptor. J Allergy Clin Immunol 120(2):300–307PubMedGoogle Scholar
  63. 63.
    Gschwandtner M et al (2012) Histamine down-regulates IL-27 production in antigen-presenting cells. J Leukoc Biol 92(1):21–29PubMedGoogle Scholar
  64. 64.
    Gschwandtner M et al (2010) Histamine H(4) receptor activation on human slan-dendritic cells down-regulates their pro-inflammatory capacity. Immunology 132(1):49–56PubMedGoogle Scholar
  65. 65.
    Gutzmer R et al (2005) Histamine H4 receptor stimulation suppresses IL-12p70 production and mediates chemotaxis in human monocyte-derived dendritic cells. J Immunol 174(9):5224–5232PubMedGoogle Scholar
  66. 66.
    Jutel M et al (2001) Histamine upregulates Th1 and downregulates Th2 responses due to different patterns of surface histamine 1 and 2 receptor expression. Int Arch Allergy Immunol 124(1–3):190–192PubMedGoogle Scholar
  67. 67.
    Brown SJ, McLean WHI (2009) Eczema genetics: Current state of knowledge and future goals. J Invest Dermatol 129(3):543–552PubMedGoogle Scholar
  68. 68.
    Koga C et al (2008) Possible pathogenic role of Th17 cells for atopic dermatitis. J Invest Dermatol 128(11):2625–2630PubMedGoogle Scholar
  69. 69.
    Mommert S et al (2012) Human memory Th17 cells express a functional histamine H4 receptor. Am J Pathol 180(1):177–185PubMedGoogle Scholar
  70. 70.
    Brehler R et al (2016) Evidence vs. efficacy in allergen-specific immunotherapy: Considerations using the example of tradable products in Germany. Allergo J Int 25:38–43PubMedPubMedCentralGoogle Scholar
  71. 71.
    Klimek L, Brehler R, Bergmann KC (2018) Allergenspezifische Immuntherapie mit Vorratsmilben. Allergo J 27(1):32Google Scholar
  72. 72.
    Klimek L, Fox G‑C, Thum-Oltmer S (2018) SCIT with a high-dose house dust mite allergoid is well tolerated: Safety data from pooled clinical trials and more than 10 years of daily practice analyzed in different subgroups. Allergo J Int 27(5):131–139PubMedPubMedCentralGoogle Scholar
  73. 73.
    Klimek L et al (2018) Virus-like particles (VLP) in prophylaxis and immunotherapy of allergic diseases. Allergo J Int 27(8):245–255PubMedPubMedCentralGoogle Scholar
  74. 74.
    Teubl BJ et al (2017) The effect of saliva on the fate of nanoparticles. Clin Oral Investig 22(2):929–940PubMedPubMedCentralGoogle Scholar
  75. 75.
    Westmeier D et al (2018) Nanomaterial-microbe cross-talk: Physicochemical principles and (patho)biological consequences. Chem Soc Rev 47(14):5312–5337PubMedGoogle Scholar
  76. 76.
    Docter D et al (2015) No king without a crown—Impact of the nanomaterial-protein corona on nanobiomedicine. Nanomedicine (Lond) 10(3):503–519Google Scholar
  77. 77.
    Docter D et al (2015) The nanoparticle biomolecule corona: Lessons learned—Challenge accepted? Chem Soc Rev 44(17):6094–6121PubMedGoogle Scholar
  78. 78.
    Siemer S, Westmeier D, Vallet C, Steinmann J, Buer J, Stauber RH, Knauer SK (2018) Breaking resistance to nanoantibiotics by overriding corona-dependent inhibition using a pH-switch. Mater Today.  https://doi.org/10.1016/j.mattod.2018.10.041 Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • L. Klimek
    • 1
    Email author
  • I. Casper
    • 1
  • B. Wollenberg
    • 2
  • R. Stauber
    • 3
  • M. Koennecke
    • 2
  1. 1.Zentrum für Rhinologie und Allergologie WiesbadenWiesbadenDeutschland
  2. 2.HNO-Universitätsklinik LübeckLübeckDeutschland
  3. 3.HNO-Universitätsklinik MainzMainzDeutschland

Personalised recommendations