Advertisement

HNO

, Volume 67, Issue 10, pp 750–759 | Cite as

Etiology and therapy indication for cochlear implantation in children with single-sided deafness

Retrospective analysis
  • S. L. CushingEmail author
  • K. A. Gordon
  • M. Sokolov
  • V. Papaioannou
  • M. Polonenko
  • B. C. Papsin
Original articles
  • 221 Downloads

Abstract

Objective

The characteristics of children with single-sided deafness (SSD) who become candidates for unilateral cochlear implantation (uCI) were identified.

Study design

In all, 118 children with SSD presenting from 2013–2019 to a tertiary pediatric children’s hospital were retrospectively assessed regarding candidacy for uCI.

Results

Of the 118 children, 103 had completed uCI candidacy assessment, while 15 were undergoing this assessment at the time of review. More than half of children did not go on to implantation (63/103, 61%), with the 2 main reasons being (1) half (31/63) did not meet candidacy criteria for implantation, most commonly due to cochlear nerve aplasia/hypoplasia (31/82 who were assessed with MRI, 38%) and (2) families (30/103; 29%) declined participation in the surgical arm of the trial. The most common etiologies of SSD in the 37/103 (36%) children who both met candidacy and consented to implantation were congenital cytomegalovirus (cCMV; 16/37, 43%), unknown (6/37, 16%), cochleovestibular anomaly and trauma (each 5/37, 14%).

Conclusions

Many children with SSD who present for implant candidacy assessment do not ultimately receive uCI. Major factors contributing to noncandidacy are cochlear nerve aplasia and parental acceptance of the intervention. While approximately half of children with SSD in our cohort were candidates for implantation, only 1/3 of the total cohort proceeded with implantation with the main predictors of acceptability of this intervention being an etiology (i.e., cCMV) that carries risk of progressive deterioration in the better hearing ear or SSD that was sudden in onset. These findings provide important insight into this new population of cochlear implant users and the emerging acceptance of intervention in children with SSD.

Keywords

Unilateral deafness Cochlear nerve aplasia Cochlear nerve hypoplasia Cytomegalovirus Pediatrics Hearing loss 

Ätiologie und Therapieindikation zur Cochleaimplantation bei Kindern mit unilateraler Taubheit

Retrospektive Analyse

Zusammenfassung

Ziel

Es wurden Merkmale von Kindern mit einseitiger Taubheit („single-sided deafness“, SSD) herausgearbeitet, bei denen eine unilaterale Cochleaimplantation (uCI) infrage kam.

Studiendesign

Insgesamt wurden die Fälle von 118 Kindern mit SSD, die sich in der Zeit von 2013–2019 in einem Kinderkrankenhaus der Tertiärversorgung vorstellten, retrospektiv in Bezug auf die Eignung als Kandidat für eine uCI ausgewertet.

Ergebnisse

Von den 118 Kindern hatten 103 die vollständigen Voruntersuchungen für eine uCI durchlaufen, während 15 diese Voruntersuchungen zum Zeitpunkt der vorliegenden Arbeit noch absolvierten. Bei mehr als der Hälfte der Kindern kam es nicht zur Implantation (63/103, 61 %), Folgendes waren die beiden Hauptgründe: Zum einen erfüllte die Hälfte (31/63) nicht die Kriterien als Kandidat für eine Implantation, zumeist aufgrund einer Aplasie/Hypoplasie des N. cochlearis (31/82 mit erfolgter MRT-Untersuchung, 38 %), und zum anderen lehnten manche Familien (30/103, 29 %) die Teilnahme am chirurgischen Arm der Studie ab. Die häufigsten Ätiologien der SSD bei den 37/103 (36 %) Kindern, die sowohl die Kriterien als Kandidat für eine Implantation erfüllten als auch der Implantation zustimmten, bestanden aus kongenitaler Zytomegalovirusinfektion (cCMV; 16/37, 43 %), unbekannten Ursachen (6/37, 16 %), cochleovestibulären Anomalien und Traumata (je 5/37, 14 %).

Schlussfolgerung

Bei vielen Kindern mit SSD, die sich zur Voruntersuchung für eine uCI vorstellen, wurde letztlich keine uCI durchgeführt. Hauptfaktoren dafür sind die Aplasie des N. cochlearis und die nicht erteilte Zustimmung der Eltern zu der Intervention. Während annähernd die Hälfte der Kinder mit SSD in der untersuchten Kohorte Kandidaten für eine uCI waren, kam es nur bei einem Drittel der Gesamtkohorte zur Implantation; dabei waren die Hauptprädiktoren der Akzeptanz dieser Intervention eine Ätiologie (z. B. cCMV), bei der das Risiko einer progredienten Verschlechterung auf dem besser hörenden Ohr besteht, oder eine plötzlich aufgetretene SSD. Aus den vorliegenden Ergebnissen lassen sich wichtige Erkenntnisse über diese neue Population der Nutzer von Cochleaimplantaten und die sich entwickelnde Akzeptanz einer Intervention bei Kindern mit SSD ziehen.

Schlüsselwörter

Einseitige Gehörlosigkeit N.-cochlearis-Aplasie N.-cochlearis-Hypoplasie Zytomegalievirus Pädiatrie Schwerhörigkeit 

Notes

Compliance with ethical guidelines

Conflict of interest

S.L. Cushing: Speaker’s Bureau Cochlear Corporation. Oticon, Interacoustics. K.A. Gordon and B.C. Papsin: Speaker’s Bureau Cochlear Corporation. M. Sokolov, V. Papaioannou and M. Polonenko declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

References

  1. 1.
    Gordon K, Henkin Y, Kral A (2015) Asymmetric hearing during development: The aural preference syndrome and treatment options. Pediatrics 136(1):141–153CrossRefPubMedGoogle Scholar
  2. 2.
    Thomas JP, Neumann K, Dazert S, Voelter C (2017) Cochlear implantation in children with congenital single-sided deafness. Otol Neurotol 38(4):496–503CrossRefPubMedGoogle Scholar
  3. 3.
    Arndt S, Laszig R, Aschendorff A, Hassepass F, Beck R, Wesarg T (2017) Cochlear implant treatment of patients with single-sided deafness or asymmetric hearing loss. HNO 65(Suppl 2):98–108.  https://doi.org/10.1007/s00106-016-0297-5 CrossRefPubMedGoogle Scholar
  4. 4.
    Arndt S, Prosse S, Laszig R, Wesarg T, Aschendorff A, Hassepass F (2015) Cochlear implantation in children with single-sided deafness: Does aetiology and duration of deafness matter? Audiol Neurootol 20(Suppl 1):21–30CrossRefPubMedGoogle Scholar
  5. 5.
    Dancer J, Burl NT, Waters S (1995) Effects of unilateral hearing loss on teacher responses to the SIFTER. Screening instrument for targeting educational risk. Am Ann Deaf 140(3):291–294CrossRefPubMedGoogle Scholar
  6. 6.
    Morita S, Suzuki M, Iizuka K (2010) Non-organic hearing loss in childhood. Int J Pediatr Otorhinolaryngol 74(5):441–446CrossRefPubMedGoogle Scholar
  7. 7.
    Sharma A, Dorman MF, Kral A (2005) The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hear Res 203(1–2):134–143CrossRefPubMedGoogle Scholar
  8. 8.
    Newton V (2009) Paediatric audiological medicine, 2nd edn. Wiley, HobokenGoogle Scholar
  9. 9.
    Sokolov M, Gordon KA, Polonenko M, Blaser SI, Papsin BC, Cushing SL (2019) Vestibular and balance function is often impaired in children with profound unilateral sensorineural hearing loss. Hear Res 372:52–61.  https://doi.org/10.1016/j.heares.2018.03.032 CrossRefPubMedGoogle Scholar
  10. 10.
    Wolter NE, Cushing SL, Vilchez-Madrigal LD et al (2016) Unilateral hearing loss is associated with impaired balance in children: A pilot study. Otol Neurotol 37(10):1589–1595CrossRefPubMedGoogle Scholar
  11. 11.
    Lieu JE (2004) Speech-language and educational consequences of unilateral hearing loss in children. Arch Otolaryngol Head Neck Surg 130(5):524–530CrossRefPubMedGoogle Scholar
  12. 12.
    Lieu JE, Tye-Murray N, Fu Q (2012) Longitudinal study of children with unilateral hearing loss. Laryngoscope 122(9):2088–2095CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rachakonda T, Shimony JS, Coalson RS, Lieu JE (2014) Diffusion tensor imaging in children with unilateral hearing loss: A pilot study. Front Syst Neurosci 8:87CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schmithorst VJ, Holland SK, Ret J, Duggins A, Arjmand E, Greinwald J (2005) Cortical reorganization in children with unilateral sensorineural hearing loss. Neuroreport 16(5):463–467CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang X, Fan Y, Zhao F et al (2014) Altered regional and circuit resting-state activity associated with unilateral hearing loss. PLoS ONE 9(5):e96126CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yang M, Chen HJ, Liu B et al (2014) Brain structural and functional alterations in patients with unilateral hearing loss. Hear Res 316:37–43CrossRefPubMedGoogle Scholar
  17. 17.
    Haffey T, Fowler N, Anne S (2013) Evaluation of unilateral sensorineural hearing loss in the pediatric patient. Int J Pediatr Otorhinolaryngol 77(6):955–958CrossRefPubMedGoogle Scholar
  18. 18.
    Arndt S, Aschendorff A, Laszig R et al (2011) Comparison of pseudobinaural hearing to real binaural hearing rehabilitation after cochlear implantation in patients with unilateral deafness and tinnitus. Otol Neurotol 32(1):39–47CrossRefPubMedGoogle Scholar
  19. 19.
    Van de Heyning P, Vermeire K, Diebl M, Nopp P, Anderson I, De Ridder D (2008) Incapacitating unilateral tinnitus in single-sided deafness treated by cochlear implantation. Ann Otol Rhinol Laryngol 117(9):645–652CrossRefPubMedGoogle Scholar
  20. 20.
    Vermeire K, Van de Heyning P (2009) Binaural hearing after cochlear implantation in subjects with unilateral sensorineural deafness and tinnitus. Audiol Neurootol 14(3):163–171CrossRefPubMedGoogle Scholar
  21. 21.
    Buechner A, Brendel M, Saalfeld H, Litvak L, Frohne-Buechner C, Lenarz T (2010) Results of a pilot study with a signal enhancement algorithm for HiRes 120 cochlear implant users. Otol Neurotol 31(9):1386–1390PubMedGoogle Scholar
  22. 22.
    Firszt JB, Holden LK, Reeder RM, Cowdrey L, King S (2012) Cochlear implantation in adults with asymmetric hearing loss. Ear Hear 33(4):521–533CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Stelzig Y, Jacob R, Mueller J (2011) Preliminary speech recognition results after cochlear implantation in patients with unilateral hearing loss: A case series. J Med Case Rep 5:343CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tavora-Vieira D, De Ceulaer G, Govaerts PJ, Rajan GP (2015) Cochlear implantation improves localization ability in patients with unilateral deafness. Ear Hear 36(3):e93–e98CrossRefPubMedGoogle Scholar
  25. 25.
    Tavora-Vieira D, Marino R, Acharya A, Rajan GP (2015) The impact of cochlear implantation on speech understanding, subjective hearing performance, and tinnitus perception in patients with unilateral severe to profound hearing loss. Otol Neurotol 36(3):430–436CrossRefPubMedGoogle Scholar
  26. 26.
    Gordon KA, Wong DD, Papsin BC (2013) Bilateral input protects the cortex from unilaterally-driven reorganization in children who are deaf. Brain 136(Pt 5):1609–1625CrossRefPubMedGoogle Scholar
  27. 27.
    Hassepass F, Aschendorff A, Wesarg T et al (2013) Unilateral deafness in children: Audiologic and subjective assessment of hearing ability after cochlear implantation. Otol Neurotol 34(1):53–60CrossRefPubMedGoogle Scholar
  28. 28.
    Tavora-Vieira D, Rajan GP (2015) Cochlear implantation in children with congenital and Noncongenital unilateral deafness. Otol Neurotol 36(8):1457–1458CrossRefPubMedGoogle Scholar
  29. 29.
    Polonenko MJ, Papsin BC, Gordon KA (2017) Cortical activity in children with single-sided deafness pre- and post-implantation. Conference of the Association for Research in Otolaryngology 2017, BaltimoreGoogle Scholar
  30. 30.
    Sokolov M, Cushing SL, Polonenko M, Blaser SI, Papsin BC, Gordon KA (2017) Clinical characteristics of children with single-sided deafness presenting for candidacy assessment for unilateral cochlear implantation. Curr Otorhinolaryngol Rep 5(4):275–285CrossRefGoogle Scholar
  31. 31.
    Daya H, Figueirido JC, Gordon KA, Twitchell K, Gysin C, Papsin BC (1999) The role of a graded profile analysis in determining candidacy and outcome for cochlear implantation in children. Int J Pediatr Otorhinolaryngol 49(2):135–142CrossRefPubMedGoogle Scholar
  32. 32.
    van der Knaap MS, Vermeulen G, Barkhof F, Hart AA, Loeber JG, Weel JF (2004) Pattern of white matter abnormalities at MR imaging: Use of polymerase chain reaction testing of Guthrie cards to link pattern with congenital cytomegalovirus infection. Radiology 230(2):529–536CrossRefPubMedGoogle Scholar
  33. 33.
    Clemmens CS, Guidi J, Caroff A et al (2013) Unilateral cochlear nerve deficiency in children. Otolaryngol Head Neck Surg 149(2):318–325CrossRefPubMedGoogle Scholar
  34. 34.
    Stehel EK, Shoup AG, Owen KE et al (2008) Newborn hearing screening and detection of congenital cytomegalovirus infection. Pediatrics 121(5):970–975CrossRefPubMedGoogle Scholar
  35. 35.
    Grosse SD, Ross DS, Dollard SC (2008) Congenital cytomegalovirus (CMV) infection as a cause of permanent bilateral hearing loss: A quantitative assessment. J Clin Virol 41(2):57–62CrossRefPubMedGoogle Scholar
  36. 36.
    Barbi M, Binda S, Caroppo S, Ambrosetti U, Corbetta C, Sergi P (2003) A wider role for congenital cytomegalovirus infection in sensorineural hearing loss. Pediatr Infect Dis J 22(1):39–42CrossRefPubMedGoogle Scholar
  37. 37.
    Park AH, Duval M, McVicar S, Bale JF, Hohler N, Carey JC (2014) A diagnostic paradigm including cytomegalovirus testing for idiopathic pediatric sensorineural hearing loss. Laryngoscope 124(11):2624–2629CrossRefPubMedGoogle Scholar
  38. 38.
    Dahle AJ, Fowler KB, Wright JD, Boppana SB, Britt WJ, Pass RF (2000) Longitudinal investigation of hearing disorders in children with congenital cytomegalovirus. J Am Acad Audiol 11(5):283–290PubMedGoogle Scholar
  39. 39.
    Lanzieri TM, Chung W, Flores M et al (2017) Hearing loss in children with asymptomatic congenital cytomegalovirus infection. Pediatrics 139(3):e20162610CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Carlsson PI, Hall M, Lind KJ, Danermark B (2011) Quality of life, psychosocial consequences, and audiological rehabilitation after sudden sensorineural hearing loss. Int J Audiol 50(2):139–144CrossRefPubMedGoogle Scholar
  41. 41.
    Noguchi Y, Takahashi M, Ito T, Fujikawa T, Kawashima Y, Kitamura K (2016) Delayed restoration of maximum speech discrimination scores in patients with idiopathic sudden sensorineural hearing loss. Auris Nasus Larynx 43(5):495–500CrossRefPubMedGoogle Scholar
  42. 42.
    Li LP, Shiao AS, Chen KC et al (2012) Neuromagnetic index of hemispheric asymmetry prognosticating the outcome of sudden hearing loss. PLoS ONE 7(4):e35055CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Polonenko MJ, Papsin BC, Gordon KA (2017) Children with single-sided deafness use their cochlear implant. Ear Hear 38(6):681–689.  https://doi.org/10.1097/AUD.0000000000000452 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • S. L. Cushing
    • 1
    • 2
    • 3
    Email author
  • K. A. Gordon
    • 2
    • 3
    • 4
  • M. Sokolov
    • 1
    • 2
    • 3
  • V. Papaioannou
    • 4
  • M. Polonenko
    • 3
    • 5
    • 6
  • B. C. Papsin
    • 1
    • 2
    • 3
  1. 1.Department of Otolaryngology, Head and Neck SurgeryHospital for Sick ChildrenTorontoCanada
  2. 2.Department of Otolaryngology, Head and Neck SurgeryUniversity of TorontoTorontoCanada
  3. 3.Archie’s Cochlear Implant LaboratoryHospital for Sick ChildrenTorontoCanada
  4. 4.Department of Communication DisordersHospital for Sick ChildrenTorontoCanada
  5. 5.Department of Neurosciences & Mental HealthHospital for Sick ChildrenTorontoCanada
  6. 6.Institute of Medical ScienceUniversity of TorontoTorontoCanada

Personalised recommendations