Advertisement

HNO

, Volume 67, Issue 2, pp 90–97 | Cite as

Gründe für die Entstehung von Allergien bei Kindern

  • L. KlimekEmail author
  • B. Wollenberg
  • O. Guntinas-Lichius
  • O. Pfaar
  • M. Koennecke
Übersichten

Zusammenfassung

Allergien im Kindesalter sind in den letzten Jahrzehnten deutlich angestiegen. Neben Umweltfaktoren und Ernährung spielen v. a. genetische und epigenetische Mechanismen und das Mikrobiom der Kinder eine wichtige Rolle. Relevant ist hierbei, wie sich diese Einflüsse auf die frühe Immunentwicklung von angeborenem und erworbenem Immunsystem der Kinder auswirken. Deren komplexe Regulation ist wesentlich dafür, ob eine Allergie beim Kind entsteht, die sich v. a. in einer atopischen Dermatitis, einem Asthma bronchiale oder einer allergischen Rhinokonjunktivitis äußert, oder ob das Kind eine Immuntoleranz entwickelt. Diese Einflüsse können schon pränatal beginnen und bereits zu diesem Zeitpunkt für die spätere Immunentwicklung und Krankheitsentstehung ausschlaggebend sein.

Schlüsselwörter

Allergische Rhinitis Asthma Immunsystemerkrankungen Dermatitis, atopische T-Lymphozyten 

Reasons for the development of allergies in children

Abstract

Allergies are one of the most common chronic diseases in childhood, contributing to a tremendous medical and economical burden in health care systems of most industrialized countries. The development of allergies is dependent on a complex interaction of—among others—environmental factors, nutrition, genetic and epigenetic mechanisms as well as the microbiome. These diverse factors can influence early life immune regulation including innate and adaptive immune mechanisms in a complex fashion. In case of any Childhood allergies have increased significantly in past decades. In addition to environmental factors and nutrition, genetic and epigenetic mechanisms as well as the microbiome of children play an important role. Of relevance is the way in which these diverse factors influence early immune development of the innate and adaptive immune systems of children. Their complex regulation is decisive for whether or not a child develops an allergy that manifests in most cases as atopic dermatitis, bronchial asthma, or allergic rhino conjunctivitis, or whether a child develops an immune tolerance. These influences can begin prenatally, already setting the course for later immune system development and occurrence of disease.

Keywords

Allergic rhinitis Asthma Immune system diseases Dermatitis, atopic T-lymphocytes 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

L. Klimek, B. Wollenberg, O. Guntinas-Lichius, O. Pfaar und M. Koennecke geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Wahn U, Seger R, Wahn V, Holländer GA (2005) Pädiatrische Allergologie und Immunologie, 4. Aufl. Urban & Fischer, MünchenGoogle Scholar
  2. 2.
    Frey U, von Mutius E (2009) The challenge of managing wheezing in infants. N Engl J Med 360:2130–2133CrossRefGoogle Scholar
  3. 3.
    Jutel M, Akdis CA (2011) T‑cell subset regulation in atopy. Curr Allergy Asthma Rep 11:139–145CrossRefGoogle Scholar
  4. 4.
    Schaub B, Liu J, Hoppler S, Haug S, Sattler C, Lluis A et al (2008) Impairment of T‑regulatory cells in cord blood of atopic mothers. J Allergy Clin Immunol 121:1491–1499CrossRefGoogle Scholar
  5. 5.
    Hartl D, Koller B, Mehlhorn AT, Reinhardt D, Nicolai T, Schendel DJ, Griese M, Krauss-Etschmann S (2007) Quantitative and functional impairment of pulmonary CD4+CD25hi regulatory T cells in pediatric asthma. J Allergy Clin Immunol 119:1258–1266CrossRefGoogle Scholar
  6. 6.
    Smyth LJ, Eustace A, Kolsum U, Blaikely J, Singh D (2010) Increased airway T regulatory cells in asthmatic subjects. Chest 138:905–912CrossRefGoogle Scholar
  7. 7.
    Shi HZ, Li S, Xie ZF, Qin XJ, Qin X, Zhong XN (2004) Regulatory CD4+CD25+ T lymphocytes in peripheral blood from patients with atopic asthma. Clin Immunol 113:172–178CrossRefGoogle Scholar
  8. 8.
    Lee JH, Yu HH, Wang LC, Yang YH, Lin YT, Chiang BL (2007) The levels of CD4+CD25+ regulatory T cells in paediatric patients with allergic rhinitis and bronchial asthma. Clin Exp Immunol 148:53–63CrossRefGoogle Scholar
  9. 9.
    Akdis M, Palomares O, van de Veen W, van Splunter M, Akdis CA (2012) TH17 and TH22 cells: a confusion of antimicrobial response with tissue inflammation versus protection. J Allergy Clin Immunol 129:1438–1449CrossRefGoogle Scholar
  10. 10.
    Cosmi L, Liotta F, Maggi E, Romagnani S, Annunziato F (2011) Th17 cells: new players in asthma pathogenesis. Allergy 66:989–998CrossRefGoogle Scholar
  11. 11.
    Alcorn JF, Crowe CR, Kolls JK (2010) TH17 cells in asthma and COPD. Annu Rev Physiol 72:495–516CrossRefGoogle Scholar
  12. 12.
    Shimbara A, Christodoulopoulos P, Soussi-Gounni A, Olivenstein R, Nakamura Y, Levitt RC, Nicolaides NC, Holroyd KJ, Tsicopoulos A, Lafitte JJ, Wallaert B, Hamid QA (2000) IL-9 and its receptor in allergic and nonallergic lung disease: increased expression in asthma. J Allergy Clin Immunol 105:108–115CrossRefGoogle Scholar
  13. 13.
    Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S, Cianfarani F, Odorisio T, Traidl-Hoffmann C, Behrendt H, Durham SR, Schmidt-Weber CB, Cavani A (2009) Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest 119:3573–3585PubMedPubMedCentralGoogle Scholar
  14. 14.
    Schnyder B, Lima C, Schnyder-Candrian S (2010) Interleukin-22 is a negative regulator of the allergic response. Cytokine 50:220–227CrossRefGoogle Scholar
  15. 15.
    Strachan DP (1989) Hay fever, hygiene, and household size. BMJ 299:1259–1260CrossRefGoogle Scholar
  16. 16.
    Braun-Fahrländer C, Riedler J, Herz U, Eder W, Waser M, Grize L, Maisch S, Carr D, Gerlach F, Bufe A, Lauener RP, Schierl R, Renz H, Nowak D, von Mutius E, Allergy and Endotoxin Study Team (2002) Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 347:869–877CrossRefGoogle Scholar
  17. 17.
    von Mutius E, Radon K (2008) Living on a farm: impact on asthma induction and clinical course. Immunol Allergy Clin North Am 28:631–647CrossRefGoogle Scholar
  18. 18.
    Ege MJ, Bieli C, Frei R, van Strien RT, Riedler J, Ublagger E, Schram-Bijkerk D, Brunekreef B, van Hage M, Scheynius A, Pershagen G, Benz MR, Lauener R, von Mutius E, Braun-Fahrländer C, Parsifal Study team (2006) Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children. J Allergy Clin Immunol 117:817–823CrossRefGoogle Scholar
  19. 19.
    Schaub B, Liu J, Höppler S et al (2009) Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J Allergy Clin Immunol 123:774–782CrossRefGoogle Scholar
  20. 20.
    Human Microbiome Project Consortium, Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, Creasy HH, Earl AM, FitzGerald MG, Fulton RS, Giglio MG, Hallsworth-Pepin K, Lobos EA, Madupu R, Magrini V, Martin JC, Mitreva M, Muzny DM, Sodergren EJ, Versalovic J et al (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214CrossRefGoogle Scholar
  21. 21.
    Hansel TT, Johnston SL, Openshaw PJ (2013) Microbes and mucosal immune responses in asthma. Lancet 381:861–873CrossRefGoogle Scholar
  22. 22.
    Bisgaard H, Hermansen MN, Buchvald F, Loland L, Halkjaer LB, Bønnelykke K, Brasholt M, Heltberg A, Vissing NH, Thorsen SV, Stage M, Pipper CB (2007) Childhood asthma after bacterial colonization of the airway in neonates. N Engl J Med 357:1487–1495CrossRefGoogle Scholar
  23. 23.
    Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut micro-biota metabolic interactions. Science 336:1262–1267CrossRefGoogle Scholar
  24. 24.
    Bisgaard H, Li N, Bonnelykke K, Chawes BL, Skov T, Paludan-Müller G, Stokholm J, Smith B, Krogfelt KA (2011) Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J Allergy Clin Immunol 128:646–665CrossRefGoogle Scholar
  25. 25.
    Stick SM, Burton PR, Gurrin L, Sly PD, LeSouëf PN (1996) Effects of maternal smoking during pregnancy and a family history of asthma on respiratory function in newborn infants. Lancet 348:1060–1064CrossRefGoogle Scholar
  26. 26.
    Lemjabbar H, Li D, Gallup M, Sidhu S, Drori E, Basbaum C (2003) Tobacco smoke-induced lung cell proliferation mediated by tumor necrosis factor alpha-converting enzyme and amphiregulin. J Biol Chem 278:26202–26207CrossRefGoogle Scholar
  27. 27.
    Willwerth BM, Schaub B, Tantisira KG, Gold DR, Palmer LJ, Litonjua AA, Perkins DL, Schroeter C, Gibbons FK, Gillman MW, Weiss ST, Finn PW (2006) Prenatal, perinatal, and heritable influences on cord blood immune responses. Ann Allergy Asthma Immunol 96:445–453CrossRefGoogle Scholar
  28. 28.
    Schäfer T, Bauer CP, Beyer K, Bufe A, Friedrichs F, Gieler U, Gronke G, Hamelmann E, Hellermann M, Kleinheinz A, Klimek L, Koletzko S, Kopp M, Lau S, Müsken H, Reese I, Schmidt S, Schnadt S, Sitter H, Strömer K, Vagts J, Vogelberg C, Wahn U, Werfel T, Worm M, Muche-Borowski C (2014) S3-Guideline on allergy prevention: 2014 update. Allergo J Int. 23(6):186–99CrossRefGoogle Scholar
  29. 29.
    Dunstan JA, Mori TA, Barden A, Beilin LJ, Taylor AL, Holt PG, Prescott SL (2003) Fish oil supplementation in pregnancy modifies neonatal allergen-specific immune responses and clinical outcomes in infants at high risk of atopy: a randomized, controlled trial. J Allergy Clin Immunol 112:1178–1184CrossRefGoogle Scholar
  30. 30.
    Krauss-Etschmann S, Hartl D, Rzehak P et al (2008) Decreased cord blood IL-4, IL-13, and CCR4 and increased TGF-beta levels after fish oil supplementation of pregnant women. J Allergy Clin Immunol 121:464–470CrossRefGoogle Scholar
  31. 31.
    Almqvist C, Garden F, Xuan W et al (2007) Omega-3 and omega-6 fatty acid exposure from early life does not effect atopy and asthma at age 5 years. J Allergy Clin Immunol 119:1438–1444CrossRefGoogle Scholar
  32. 32.
    Moffatt MF, Kabesch M, Liang L, Dixon AL (2011) Stration. J Allergy Clin Immunol 127:1587–1594CrossRefGoogle Scholar
  33. 33.
    Schedel M, Pinto LA, Schaub B, Rosenstiel P, Cherkasov D, Cameron L, Klopp N, Illig T, Vogelberg C, Weiland SK, von Mutius E, Lohoff M, Kabesch M (2008) IRF-1 gene variations influence IgE regulation and atopy. Am J Respir Crit Care Med 177:613–621CrossRefGoogle Scholar
  34. 34.
    Suttner K, Ruoss I, Rosenstiel P et al (2009) HLX1 gene variants influence the development of childhood asthma. J Allergy Clin Immunol 123:82–88CrossRefGoogle Scholar
  35. 35.
    Casaca VI, Illi S, Suttner K, Schleich I, Ballenberger N, Klucker E, Turan E, von Mutius E, Kabesch M, Schaub B (2012) TBX21 and HLX1 polymorphisms influence cytokine secretion at birth. PLoS ONE 7:e31069CrossRefGoogle Scholar
  36. 36.
    Eder W, Klimecki W, Yu L, von Mutius E, Riedler J, Braun-Fahrländer C, Nowak D, Martinez FD, ALEX Study Team (2004) Toll-like receptor 2 as a major gene for asthma in children of European farmers. J Allergy Clin Immunol 113:482–488CrossRefGoogle Scholar
  37. 37.
    Lazarus R, Raby BA, Lange C, Silverman EK, Kwiatkowski DJ, Vercelli D, Klimecki WJ, Martinez FD, Weiss ST (2004) TOLL-like receptor 10 genetic variation is associated with asthma in two independent samples. Am J Respir Crit Care Med 170:594–600CrossRefGoogle Scholar
  38. 38.
    Kormann MS, Depner M, Hartl D, Klopp N, Illig T, Adamski J et al (2008) Toll-like receptor heterodimer variants protect from childhood asthma. J Allergy Clin Immunol 122:86–92CrossRefGoogle Scholar
  39. 39.
    Raedler D, Illi S, Pinto LA, von Mutius E, Illig T, Kabesch M, Schaub B (2013) IL10 polymorphisms influence neonatal immune responses, atopic dermatitis, and wheeze at age 3 years. J Allergy Clin Immunol 131:789–796CrossRefGoogle Scholar
  40. 40.
    Lee YA, Wahn U, Kehrt R, Tarani L, Businco L, Gustafsson D, Andersson F, Oranje AP, Wolkertstorfer A, v Berg A, Hoffmann U, Küster W, Wienker T, Rüschendorf F, Reis A (2000) A major susceptibility locus for atopic dermatitis maps to chromosome 3q21. Nat Genet 26:470–473CrossRefGoogle Scholar
  41. 41.
    Morar N, Willis-Owen SA, Moffatt MF, Cookson WO (2006) The genetics of atopic dermatitis. J Allergy Clin Immunol 118:24–34CrossRefGoogle Scholar
  42. 42.
    Tomita K, Sakashita M, Hirota T, Tanaka S, Masuyama K, Yamada T, Fujieda S, Miyatake A, Hizawa N, Kubo M, Nakamura Y, Tamari M (2013) Variants in the 17q21 asthma susceptibility locus are associated with allergic rhinitis in the Japanese population. Allergy 68:92–100CrossRefGoogle Scholar
  43. 43.
    Ramasamy A, Curjuric I, Coin LJ, Kumar A, McArdle WL, Imboden M, Leynaert B, Kogevinas M, Schmid-Grendelmeier P, Pekkanen J, Wjst M, Bircher AJ, Sovio U, Rochat T, Hartikainen AL, Balding DJ, Jarvelin MR, Probst-Hensch N, Strachan DP, Jarvis DL (2011) A genome-wide meta-analysis of genetic variants associated with allergic rhinitis and grass sensitization and their interaction with birth order. J Allergy Clin Immunol 128:996–1005CrossRefGoogle Scholar
  44. 44.
    Yang IV, Schwartz DA (2012) Epigenetic mechanisms and the development of asthma. J Allergy Clin Immunol 130:1243–1255CrossRefGoogle Scholar
  45. 45.
    Brand S, Teich R, Dicke T et al (2011) Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J Allergy Clin Immunol 128:618–625CrossRefGoogle Scholar
  46. 46.
    Lal G, Zhang N, van der Touw W, Ding Y, Ju W, Bottinger EP, Reid SP, Levy DE, Bromberg JS (2009) Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J Immunol 182:259–273CrossRefGoogle Scholar
  47. 47.
    Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, Schlawe K, Chang HD, Bopp T, Schmitt E, Klein-Hessling S, Serfling E, Hamann A, Huehn J (2007) Epigenetic control of the foxp3 locus in regulatory T cells. Plos Biol 5:e38CrossRefGoogle Scholar
  48. 48.
    Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, Baron U, Olek S, Hamann A, von Boehmer H, Huehn J (2008) DNA methylation controls Foxp3 gene expression. Eur J Immunol 38:1654–1663CrossRefGoogle Scholar
  49. 49.
    Verlaan DJ, Berlivet S, Hunninghake GM, Madore AM, Larivière M, Moussette S, Grundberg E, Kwan T, Ouimet M, Ge B, Hoberman R, Swiatek M, Dias J, Lam KC, Koka V, Harmsen E, Soto-Quiros M, Avila L, Celedón JC, Weiss ST et al (2009) Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune disease. Am J Hum Genet 85:377–393CrossRefGoogle Scholar
  50. 50.
    Depner M, Fuchs O, Genuneit J, Karvonen AM, Hyvärinen A, Kaulek V, Roduit C, Weber J, Schaub B et al (2014) Clinical and epidemiologic phenotypes of childhood asthma. Am J Respir Crit Care Med 189:129–138PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • L. Klimek
    • 1
    Email author
  • B. Wollenberg
    • 2
  • O. Guntinas-Lichius
    • 3
  • O. Pfaar
    • 4
  • M. Koennecke
    • 2
  1. 1.Zentrum für Rhinologie und Allergologie WiesbadenWiesbadenDeutschland
  2. 2.Klinik für Hals-Nasen- und OhrenheilkundeUniversitätsklinikum Schleswig-HolsteinLübeckDeutschland
  3. 3.Klinik und Poliklinik für Hals- Nasen- und OhrenheilkundeUniversitätsklinikum JenaJenaDeutschland
  4. 4.Klinik für Hals-, Nasen-und Ohrenheilkunde, Sektion Rhinologie und AllergologieUniversitätsklinikum Gießen und Marburg GmbH, Philipps-Universität MarburgMarburgDeutschland

Personalised recommendations