Advertisement

Der Hautarzt

, Volume 70, Issue 4, pp 243–253 | Cite as

Aktuelle Therapie des Pemphigus

  • N. van BeekEmail author
  • D. Zillikens
  • E. Schmidt
Leitthema

Zusammenfassung

Hintergrund

Unter den bullösen Autoimmundermatosen stellt der Pemphigus eine potenziell lebensbedrohliche Erkrankungsgruppe dar. Eine schnell wirksame und effektive Therapie ist daher entscheidend.

Ziel der Arbeit

In dieser Übersichtsarbeit werden die aktuellen Therapien unter Berücksichtigung der Leitlinien erörtert und neue Therapieoptionen vorgestellt.

Methoden

Es erfolgte eine Literaturrecherche.

Ergebnisse

Die Basistherapie des Pemphigus sind systemische Glukokortikosteroide, zudem steht eine Reihe von adjuvanten Immunsuppressiva wie Azathioprin und Mycophenolat-Mofetil/Mycophenolsäure zur Steroideinsparung zur Verfügung. In einer kürzlichen prospektiven randomisierten Studie wurde die Wirkung des Anti-CD20-Antikörpers Rituximab eindrucksvoll gezeigt. In schweren oder refraktären Fällen werden Immunadsorption oder hoch dosierte intravenöse Immunglobuline (IVIG) empfohlen. Eine adjuvante Immunadsorption erscheint auch bei Patienten mit hohen Autoantikörperspiegeln in den ersten 8 bis 12 Wochen der Therapie sinnvoll. Diverse neue Therapeutika befinden sich derzeit in der klinischen Erprobung.

Diskussion

Die Therapie des Pemphigus hat sich durch den Einsatz von Rituximab deutlich verbessert. Hierdurch kann der Einsatz von Glukokortikosteroiden, der mit einer hohen Rate an unerwünschten Nebenwirkungen und erhöhter Mortalität assoziiert war, reduziert werden. Nach einer Zulassung von Rituximab zur Behandlung des Pemphigus durch die amerikanische FDA (Food and Drug Administration) 2018 wird die europäische Zulassung für 2019 erwartet.

Schlüsselwörter

Autoantikörper Rituximab Immunadsorption Systemische Glukokortikosteroide Adjuvante Immunsuppressiva 

Therapy of pemphigus

Abstract

Background

Pemphigus diseases are a heterogeneous group of potentially life-threatening autoimmune bullous disorders. Therefore, rapidly acting and effective therapeutic approaches are essential.

Objectives

In this review, current therapeutic options in line with available guidelines are presented and new therapeutic approaches are discussed.

Methods

A literature search was performed using PubMed.

Results

Treatment of pemphigus is based on systemic glucocorticosteroids, frequently combined with potentially corticosteroid-sparing immunosuppressants such as azathioprine and mycophenolate mofetil/mycophenolic acid. Recently, the impressive efficacy of the anti-CD20 antibody rituximab has been shown in a prospective randomized trial. In severe or treatment-refractory cases, immunoadsorption or high-dose intravenous immunoglobulins (IVIG) are recommended. Adjuvant immunoadsorption also seems to be useful within the first 8–12 weeks of therapy in patients with very high autoantibody levels. A variety of new therapeutic approaches is currently evaluated in phase IIa studies.

Conclusion

Therapy of pemphigus has been greatly improved by the employment of rituximab. The use of glucocorticosteroids, associated with a high number of adverse events and elevated mortality, could be reduced by the additional use of rituximab. After approval of rituximab for the treatment of pemphigus by the US Food and Drug Administration in 2018, licensing in Europe is expected in 2019.

Keywords

Autoantibodies Rituximab Immunoadsorption Systemic glucocorticoids Adjuvant immunosuppression 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

N. van Beek, D. Zillikens und E. Schmidt geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Ahmed AR, Shetty S (2015) A comprehensive analysis of treatment outcomes in patients with pemphigus vulgaris treated with rituximab. Autoimmun Rev 14:323–331PubMedGoogle Scholar
  2. 2.
    Amagai M, Ikeda S, Shimizu H et al (2009) A randomized double-blind trial of intravenous immunoglobulin for pemphigus. J Am Acad Dermatol 60:595–603PubMedGoogle Scholar
  3. 3.
    Amber KT, Lamberts A, Solimani F et al (2017) Determining the incidence of pneumocystis pneumonia in patients with autoimmune blistering diseases not receiving routine prophylaxis. Jama Dermatol 153:1137–1141PubMedPubMedCentralGoogle Scholar
  4. 4.
    Anhalt G, Strober B, Connolly M, Korman N, Greenstein D, Fantasia J, Kalish R (2005) An open-label phase I clinical study to assess the safety of PI-0824 in patients with pemphigus vulgaris. J Invest Dermatol 125:Abs23Google Scholar
  5. 5.
    Anhalt GJ (2004) Paraneoplastic pemphigus. J Investig Dermatol Symp Proc 9:29–33PubMedGoogle Scholar
  6. 6.
    Aoki-Ota M, Kinoshita M, Ota T et al (2006) Tolerance induction by the blockade of CD40/CD154 interaction in pemphigus vulgaris mouse model. J Invest Dermatol 126:105–113PubMedGoogle Scholar
  7. 7.
    Aoyama Y (2010) What’s new in i.v. immunoglobulin therapy and pemphigus: high-dose i.v. immunoglobulin therapy and its mode of action for treatment of pemphigus. J Dermatol 37:239–245PubMedGoogle Scholar
  8. 8.
    Baskan EB, Yilmaz M, Tunali S et al (2009) Efficacy and safety of long-term mycophenolate sodium therapy in pemphigus vulgaris. J Eur Acad Dermatol Venereol 23:1432–1434PubMedGoogle Scholar
  9. 9.
    Baum S, Debby A, Gilboa S et al (2016) Efficacy of Dapsone in the treatment of pemphigus vulgaris: a single-center case study. Dermatology 232:578–585PubMedGoogle Scholar
  10. 10.
    Baum S, Greenberger S, Samuelov L et al (2012) Methotrexate is an effective and safe adjuvant therapy for pemphigus vulgaris. Eur J Dermatol 22:83–87PubMedGoogle Scholar
  11. 11.
    Behzad M, Mobs C, Kneisel A et al (2012) Combined treatment with immunoadsorption and rituximab leads to fast and prolonged clinical remission in difficult-to-treat pemphigus vulgaris. Br J Dermatol 166:844–852PubMedGoogle Scholar
  12. 12.
    Beissert S, Mimouni D, Kanwar AJ et al (2010) Treating pemphigus vulgaris with prednisone and mycophenolate mofetil: a multicenter, randomized, placebo-controlled trial. J Invest Dermatol 130:2041–2048PubMedGoogle Scholar
  13. 13.
    Beissert S, Werfel T, Frieling U et al (2006) A comparison of oral methylprednisolone plus azathioprine or mycophenolate mofetil for the treatment of pemphigus. Arch Dermatol 142:1447–1454PubMedGoogle Scholar
  14. 14.
    Berkowitz P, Hu P, Warren S et al (2006) p38MAPK inhibition prevents disease in pemphigus vulgaris mice. Proc Natl Acad Sci U S A 103:12855–12860PubMedPubMedCentralGoogle Scholar
  15. 15.
    Bertram F, Brocker EB, Zillikens D et al (2009) Prospective analysis of the incidence of autoimmune bullous disorders in Lower Franconia, Germany. J Dtsch Dermatol Ges 7:434–440PubMedGoogle Scholar
  16. 16.
    Bvba A (2017) An open-label, non-controlled, phase II study to evaluate the safety, pharmacodynamics, pharmacokinetics, efficacy and conditions of use of ARGX-113 in patients with mild to moderate pemphigus (vulgaris and foliaceus). clinicaltrials.gov: NCT03334058Google Scholar
  17. 17.
    Bystryn JC, Steinman NM (1996) The adjuvant therapy of pemphigus. An update. Arch Dermatol 132:203–212PubMedGoogle Scholar
  18. 18.
    Caplan A, Fett N, Rosenbach M et al (2017) Prevention and management of glucocorticoid-induced side effects: a comprehensive review: a review of glucocorticoid pharmacology and bone health. J Am Acad Dermatol 76:1–9PubMedGoogle Scholar
  19. 19.
    Chams-Davatchi C, Esmaili N, Daneshpazhooh M et al (2007) Randomized controlled open-label trial of four treatment regimens for pemphigus vulgaris. J Am Acad Dermatol 57:622–628PubMedGoogle Scholar
  20. 20.
    Chams-Davatchi C, Mortazavizadeh A, Daneshpazhooh M et al (2013) Randomized double blind trial of prednisolone and azathioprine, vs. prednisolone and placebo, in the treatment of pemphigus vulgaris. J Eur Acad Dermatol Venereol 27:1285–1292PubMedGoogle Scholar
  21. 21.
    Cianchini G, Lupi F, Masini C et al (2012) Therapy with rituximab for autoimmune pemphigus: results from a single-center observational study on 42 cases with long-term follow-up. J Am Acad Dermatol 67:617–622PubMedGoogle Scholar
  22. 22.
    Cohen SN, Lim RP, Paul CJ et al (2006) Equal efficacy of topical tacrolimus and clobetasone butyrate in pemphigus foliaceus. Int J Dermatol 45:1379PubMedGoogle Scholar
  23. 23.
    Colliou N, Picard D, Caillot F et al (2013) Long-term remissions of severe pemphigus after rituximab therapy are associated with prolonged failure of desmoglein B cell response. Sci Transl Med 5:175ra130Google Scholar
  24. 24.
    Craythorne EE, Mufti G, Duvivier AW (2011) Rituximab used as a first-line single agent in the treatment of pemphigus vulgaris. J Am Acad Dermatol 65:1064–1065PubMedGoogle Scholar
  25. 25.
    De Simone C, Caldarola G, Perino F et al (2012) Enteric-coated mycophenolate sodium as a steroid-sparing agent in pemphigus treatment: a retrospective study. Dermatol Ther 25:219–222PubMedGoogle Scholar
  26. 26.
    Dick SE, Werth VP (2006) Pemphigus: a treatment update. Autoimmunity 39:591–599PubMedGoogle Scholar
  27. 27.
    Ellebrecht CT, Bhoj VG, Nace A et al (2016) Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353:179–184PubMedPubMedCentralGoogle Scholar
  28. 28.
    Ellebrecht CT, Choi EJ, Allman DM et al (2014) Subcutaneous veltuzumab, a humanized anti-CD20 antibody, in the treatment of refractory pemphigus vulgaris. Jama Dermatol 150:1331–1335PubMedPubMedCentralGoogle Scholar
  29. 29.
    Eming R, Hennerici T, Backlund J et al (2014) Pathogenic IgG antibodies against desmoglein 3 in pemphigus vulgaris are regulated by HLA-DRB1*04:02-restricted T cells. J Immunol 193:4391–4399PubMedGoogle Scholar
  30. 30.
    Eming R, Nagel A, Wolff-Franke S et al (2008) Rituximab exerts a dual effect in pemphigus vulgaris. J Invest Dermatol 128:2850–2858PubMedGoogle Scholar
  31. 31.
    Eming R, Rech J, Barth S et al (2006) Prolonged clinical remission of patients with severe pemphigus upon rapid removal of desmoglein-reactive autoantibodies by immunoadsorption. Dermatology 212:177–187PubMedGoogle Scholar
  32. 32.
    Eming R, Sticherling M, Hofmann SC et al (2015) S2k guidelines for the treatment of pemphigus vulgaris/foliaceus and bullous pemphigoid. J Dtsch Dermatol Ges 13:833–844PubMedGoogle Scholar
  33. 33.
    Fardet L, Flahault A, Kettaneh A et al (2007) Corticosteroid-induced clinical adverse events: frequency, risk factors and patient’s opinion. Br J Dermatol 157:142–148PubMedGoogle Scholar
  34. 34.
    Feldman RJ, Ahmed AR (2011) Relevance of rituximab therapy in pemphigus vulgaris: analysis of current data and the immunologic basis for its observed responses. Expert Rev Clin Immunol 7:529–541PubMedGoogle Scholar
  35. 35.
    Fitzgerald JC, Weiss SL, Maude SL et al (2017) Cytokine Release Syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukemia. Crit Care Med 45:e124–e131PubMedPubMedCentralGoogle Scholar
  36. 36.
    Grossman JM, Gordon R, Ranganath VK et al (2010) American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res (hoboken) 62:1515–1526Google Scholar
  37. 37.
    Gurcan HM, Ahmed AR (2009) Analysis of current data on the use of methotrexate in the treatment of pemphigus and pemphigoid. Br J Dermatol 161:723–731PubMedGoogle Scholar
  38. 38.
    Gurcan HM, Ahmed AR (2009) Efficacy of dapsone in the treatment of pemphigus and pemphigoid: analysis of current data. Am J Clin Dermatol 10:383–396PubMedGoogle Scholar
  39. 39.
    Hahn-Ristic K, Rzany B, Amagai M et al (2002) Increased incidence of pemphigus vulgaris in southern Europeans living in Germany compared with native Germans. J Eur Acad Dermatol Venereol 16:68–71PubMedGoogle Scholar
  40. 40.
    Hammers CM, Stanley JR (2016) Mechanisms of disease: Pemphigus and Bullous Pemphigoid. Annu Rev Pathol 11:175–197PubMedPubMedCentralGoogle Scholar
  41. 41.
    Harman KE, Brown D, Exton LS et al (2017) British Association of Dermatologists’ guidelines for the management of pemphigus vulgaris 2017. Br J Dermatol 177:1170–1201PubMedGoogle Scholar
  42. 42.
    Herrmann G, Hunzelmann N, Engert A (2003) Treatment of pemphigus vulgaris with anti-CD20 monoclonal antibody (rituximab). Br J Dermatol 148:602–603PubMedGoogle Scholar
  43. 43.
    Hertl M, Jedlickova H, Karpati S et al (2015) Pemphigus. S2 Guideline for diagnosis and treatment—guided by the European Dermatology Forum (EDF) in cooperation with the European Academy of Dermatology and Venereology (EADV). J Eur Acad Dermatol Venereol 29:405–414PubMedGoogle Scholar
  44. 44.
    Hertl M, Zillikens D, Borradori L et al (2008) Recommendations for the use of rituximab (anti-CD20 antibody) in the treatment of autoimmune bullous skin diseases. J Dtsch Dermatol Ges 6:366–373PubMedGoogle Scholar
  45. 45.
    Heupel WM, Muller T, Efthymiadis A et al (2009) Peptides targeting the Desmoglein 3 adhesive interface prevent autoantibody-induced acantholysis in pemphigus. J Biol Chem 284:8589–8595PubMedPubMedCentralGoogle Scholar
  46. 46.
    Hofrichter M, Dworschak J, Emtenani S et al (2018) Immunoadsorption of Desmoglein-3-specific IgG abolishes the blister-inducing capacity of pemphigus vulgaris IgG in neonatal mice. FrontImmunol 9:1935Google Scholar
  47. 47.
    Horvath B, Huizinga J, Pas HH et al (2012) Low-dose rituximab is effective in pemphigus. Br J Dermatol 166:405–412PubMedGoogle Scholar
  48. 48.
    Huang A, Madan RK, Levitt J (2016) Future therapies for pemphigus vulgaris: Rituximab and beyond. J Am Acad Dermatol 74:746–753PubMedGoogle Scholar
  49. 49.
    Hubner F, Kasperkiewicz M, Zillikens D et al (2018) Immunoadsorption in dermatology. Hautarzt 70:51–63Google Scholar
  50. 50.
    Hubner F, Recke A, Zillikens D et al (2016) Prevalence and age distribution of Pemphigus and Pemphigoid diseases in Germany. J Invest Dermatol 136:2495–2498PubMedGoogle Scholar
  51. 51.
    Huscher D, Thiele K, Gromnica-Ihle E et al (2009) Dose-related patterns of glucocorticoid-induced side effects. Ann Rheum Dis 68:1119–1124PubMedGoogle Scholar
  52. 52.
    Inc. PB (2016) An open-label, phase 2, pilot study investigating the safety, clinical activity, pharmacokinetics, and pharmacodynamics of oral treatment with the BTK inhibitor PRN1008 in patients with newly diagnosed or relapsing pemphigus vulgaris. clinicaltrials.govGoogle Scholar
  53. 53.
    Ioannides D, Apalla Z, Lazaridou E et al (2012) Evaluation of mycophenolate mofetil as a steroid-sparing agent in pemphigus: a randomized, prospective study. J Eur Acad Dermatol Venereol 26:855–860PubMedGoogle Scholar
  54. 54.
    Joly P, Maho-Vaillant M, Prost-Squarcioni C et al (2017) First-line rituximab combined with short-term prednisone versus prednisone alone for the treatment of pemphigus (Ritux 3): a prospective, multicentre, parallel-group, open-label randomised trial. Lancet 389:2031–2040PubMedGoogle Scholar
  55. 55.
    Joly P, Mouquet H, Roujeau JC et al (2007) A single cycle of rituximab for the treatment of severe pemphigus. N Engl J Med 357:545–552PubMedGoogle Scholar
  56. 56.
    Kanwar AJ, Vinay K (2012) Rituximab in pemphigus. Indian J Dermatol Venereol Leprol 78:671–676PubMedGoogle Scholar
  57. 57.
    Kanwar AJ, Vinay K, Sawatkar GU et al (2014) Clinical and immunological outcomes of high- and low-dose rituximab treatments in patients with pemphigus: a randomized, comparative, observer-blinded study. Br J Dermatol 170:1341–1349PubMedGoogle Scholar
  58. 58.
    Kasperkiewicz M, Ellebrecht CT, Takahashi H et al (2017) Pemphigus. Nat Rev Dis Primers 3:17026PubMedPubMedCentralGoogle Scholar
  59. 59.
    Kasperkiewicz M, Eming R, Behzad M et al (2011) Efficacy and safety of rituximab in pemphigus: experience of the German Registry of Autoimmune Diseases. J Dtsch Dermatol Ges 10:727–732Google Scholar
  60. 60.
    Kasperkiewicz M, Schmidt E, Zillikens D (2012) Current therapy of the pemphigus group. Clin Dermatol 30:84–94PubMedGoogle Scholar
  61. 61.
    Kasperkiewicz M, Shimanovich I, Ludwig RJ et al (2011) Rituximab for treatment-refractory pemphigus and pemphigoid: a case series of 17 patients. J Am Acad Dermatol 65:552–558PubMedGoogle Scholar
  62. 62.
    Kasperkiewicz M, Shimanovich I, Meier M et al (2012) Treatment of severe pemphigus with a combination of immunoadsorption, rituximab, pulsed dexamethasone and azathioprine/mycophenolate mofetil: a pilot study of 23 patients. Br J Dermatol 166:154–160PubMedGoogle Scholar
  63. 63.
    Kim JDB, Werth VP, Joly P, Murrell DF (2015) The treatment of pemphigus vulgaris and pemphigus foliaceus. In: Murrell D (Hrsg) Blistering diseases: clinical features, pathogenesis, treatment. Springer, Berlin Heidelberg, S 523–531Google Scholar
  64. 64.
    Kridin K (2018) Emerging treatment options for the management of pemphigus vulgaris. Ther Clin Risk Manag 14:757–778PubMedPubMedCentralGoogle Scholar
  65. 65.
    Langenhan J, Dworschak J, Saschenbrecker S et al (2014) Specific immunoadsorption of pathogenic autoantibodies in pemphigus requires the entire ectodomains of desmogleins. Exp Dermatol 23:253–259PubMedGoogle Scholar
  66. 66.
    Leger S, Picard D, Ingen-Housz-Oro S et al (2012) Prognostic factors of paraneoplastic pemphigus. Arch Dermatol 148:1165–1172PubMedGoogle Scholar
  67. 67.
    Lunardon L, Payne AS (2012) Inhibitory human antichimeric antibodies to rituximab in a patient with pemphigus. J Allergy Clin Immunol 130:800–803PubMedPubMedCentralGoogle Scholar
  68. 68.
    Martin LK, Werth VP, Villaneuva EV et al (2011) A systematic review of randomized controlled trials for pemphigus vulgaris and pemphigus foliaceus. J Am Acad Dermatol 64:903–908PubMedGoogle Scholar
  69. 69.
    Meggitt SJ, Anstey AV, Mohd Mustapa MF et al (2011) British Association of Dermatologists’ guidelines for the safe and effective prescribing of azathioprine 2011. Br J Dermatol 165:711–734PubMedGoogle Scholar
  70. 70.
    Meurer M (2012) Immunosuppressive therapy for autoimmune bullous diseases. Clin Dermatol 30:78–83PubMedGoogle Scholar
  71. 71.
    Meyersburg D, Schmidt E, Kasperkiewicz M et al (2012) Immunoadsorption in dermatology. Ther Apher Dial 16:311–320PubMedGoogle Scholar
  72. 72.
    Murrell DF, Dick S, Ahmed AR et al (2008) Consensus statement on definitions of disease, end points, and therapeutic response for pemphigus. J Am Acad Dermatol 58:1043–1046PubMedPubMedCentralGoogle Scholar
  73. 73.
    Murrell DF, Pena S, Joly P et al (2018) Diagnosis and management of pemphigus: recommendations by an international panel of experts. J Am Acad Dermatol  https://doi.org/10.1016/j.jaad.2018.02.021 CrossRefPubMedGoogle Scholar
  74. 74.
    Nagel A, Podstawa E, Eickmann M et al (2009) Rituximab mediates a strong elevation of B‑cell-activating factor associated with increased pathogen-specific IgG but not autoantibodies in pemphigus vulgaris. J Invest Dermatol 129:2202–2210PubMedGoogle Scholar
  75. 75.
    Nousari HC, Anhalt GJ (1999) The role of mycophenolate mofetil in the management of pemphigus. Arch Dermatol 135:853–854PubMedGoogle Scholar
  76. 76.
    Orvis AK, Wesson SK, Breza TS Jr. et al (2009) Mycophenolate mofetil in dermatology. J Am Acad Dermatol 60:183–199 (quiz 200–182)PubMedGoogle Scholar
  77. 77.
    Parmar NV, Kanwar AJ, Minz RW et al (2013) Assessment of the therapeutic benefit of dexamethasone cyclophosphamide pulse versus only oral cyclophosphamide in phase II of the dexamethasone cyclophosphamide pulse therapy: a preliminary prospective randomized controlled study. Indian J Dermatol Venereol Leprol 79:70–76PubMedGoogle Scholar
  78. 78.
    Pollmann R, Schmidt T, Eming R et al (2018) Pemphigus: a comprehensive review on pathogenesis, clinical presentation and novel therapeutic approaches. Clin Rev Allergy Immunol 54:1–25PubMedGoogle Scholar
  79. 79.
    Roche H‑L (2015) A randomized, double-blind, double-dummy, active-Comparator, multicenter study to evaluate the efficacy and safety of Rituximab versus MMF in patients with pemphigus vulgaris. clinicaltrials.gov: NCT02383589Google Scholar
  80. 80.
    Sandborn WJ (2010) State-of-the-art: immunosuppression and biologic therapy. Dig Dis 28:536–542PubMedGoogle Scholar
  81. 81.
    Schaeffeler E, Fischer C, Brockmeier D et al (2004) Comprehensive analysis of thiopurine S‑methyltransferase phenotype-genotype correlation in a large population of German-Caucasians and identification of novel TPMT variants. Pharmacogenetics 14:407–417PubMedGoogle Scholar
  82. 82.
    Schmidt E (2017) Rituximab as first-line treatment of pemphigus. Lancet 389:1956–1958PubMedGoogle Scholar
  83. 83.
    Schmidt E, Brocker EB, Goebeler M (2008) Rituximab in treatment-resistant autoimmune blistering skin disorders. Clin Rev Allergy Immunol 34:56–64PubMedGoogle Scholar
  84. 84.
    Schmidt E, Dahnrich C, Rosemann A et al (2010) Novel ELISA systems for antibodies to desmoglein 1 and 3: correlation of disease activity with serum autoantibody levels in individual pemphigus patients. Exp Dermatol 19:458–463PubMedGoogle Scholar
  85. 85.
    Schmidt E, Goebeler M (2008) CD20-directed therapy in autoimmune diseases involving the skin: role of rituximab. Expert Rev Dermatol 3:259–278Google Scholar
  86. 86.
    Schmidt E, Goebeler M, Hertl M et al (2015) S2k guideline for the diagnosis of pemphigus vulgaris/foliaceus and bullous pemphigoid. J Dtsch Dermatol Ges 13:713–727PubMedGoogle Scholar
  87. 87.
    Schmidt E, Goebeler M, Zillikens D (2009) Rituximab in severe pemphigus. Ann N Y Acad Sci 1173:683–691PubMedGoogle Scholar
  88. 88.
    Schmidt E, Hennig K, Mengede C et al (2009) Immunogenicity of rituximab in patients with severe pemphigus. Clin Immunol 132:334–341PubMedGoogle Scholar
  89. 89.
    Schmidt E, Herzog S, Brocker EB et al (2005) Long-standing remission of recalcitrant juvenile pemphigus vulgaris after adjuvant therapy with rituximab. Br J Dermatol 153:449–451PubMedGoogle Scholar
  90. 90.
    Schmidt E, Hunzelmann N, Zillikens D et al (2006) Rituximab in refractory autoimmune bullous diseases. Clin Exp Dermatol 31:503–508PubMedGoogle Scholar
  91. 91.
    Schmidt E, Klinker E, Opitz A et al (2003) Protein A immunoadsorption: a novel and effective adjuvant treatment of severe pemphigus. Br J Dermatol 148:1222–1229PubMedGoogle Scholar
  92. 92.
    Schmidt E, Seitz CS, Benoit S et al (2007) Rituximab in autoimmune bullous diseases: mixed responses and adverse effects. Br J Dermatol 156:352–356PubMedGoogle Scholar
  93. 93.
    Schmidt E, Zillikens D (2011) The diagnosis and treatment of autoimmune blistering skin diseases. Dtsch Arztebl Int 108:399–405 (I–III)PubMedPubMedCentralGoogle Scholar
  94. 94.
    Schmidt E, Zillikens D (2010) Immunoadsorption in dermatology. Arch Dermatol Res 302:241–253PubMedGoogle Scholar
  95. 95.
    Schmidt E, Zillikens D (2010) Modern diagnosis of autoimmune blistering skin diseases. Autoimmun Rev 10:84–89PubMedGoogle Scholar
  96. 96.
    Shimanovich I, Bohmke AK, Westermann L et al (2009) Successful treatment of severe pemphigus with the combination of immunoadsorption and rituximab. J Invest Dermatol 129:S97Google Scholar
  97. 97.
    Shimanovich I, Herzog S, Schmidt E et al (2006) Improved protocol for treatment of pemphigus vulgaris with protein A immunoadsorption. Clin Exp Dermatol 31:768–774PubMedGoogle Scholar
  98. 98.
    Spindler V, Rotzer V, Dehner C et al (2013) Peptide-mediated desmoglein 3 crosslinking prevents pemphigus vulgaris autoantibody-induced skin blistering. J Clin Invest 123:800–811PubMedPubMedCentralGoogle Scholar
  99. 99.
    Spindler V, Vielmuth F, Schmidt E et al (2010) Protective endogenous cyclic adenosine 5′-monophosphate signaling triggered by pemphigus autoantibodies. J Immunol 185:6831–6838PubMedPubMedCentralGoogle Scholar
  100. 100.
    Tavakolpour S (2017) Current and future treatment options for pemphigus: Is it time to move towards more effective treatments? Int Immunopharmacol 53:133–142PubMedGoogle Scholar
  101. 101.
    Tony HP, Burmester G, Schulze-Koops H et al (2011) Safety and clinical outcomes of rituximab therapy in patients with different autoimmune diseases: experience from a national registry (GRAID). Arthritis Res Ther 13:R75PubMedPubMedCentralGoogle Scholar
  102. 102.
    Toth GG, Van De Meer JB, Jonkman MF (2002) Dexamethasone pulse therapy in pemphigus. J Eur Acad Dermatol Venereol 16:607–611PubMedGoogle Scholar
  103. 103.
    Tran KD, Wolverton JE, Soter NA (2013) Methotrexate in the treatment of pemphigus vulgaris: experience in 23 patients. Br J Dermatol 169:916–921PubMedGoogle Scholar
  104. 104.
    Veldman C, Hohne A, Dieckmann D et al (2004) Type I regulatory T cells specific for desmoglein 3 are more frequently detected in healthy individuals than in patients with pemphigus vulgaris. J Immunol 172:6468–6475PubMedGoogle Scholar
  105. 105.
    Vyas N, Patel NS, Cohen GF (2013) Mycophenolate mofetil as a first-line steroid-sparing agent in the treatment of pemphigus vulgaris. J Drugs Dermatol 12:210–216PubMedGoogle Scholar
  106. 106.
    Wang HH, Liu CW, Li YC et al (2015) Efficacy of rituximab for pemphigus: a systematic review and meta-analysis of different regimens. Acta Derm Venereol 95:928–932PubMedGoogle Scholar
  107. 107.
    Weng WK, Levy R (2003) Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol 21:3940–3947PubMedGoogle Scholar
  108. 108.
    Werth VP (1996) Treatment of pemphigus vulgaris with brief, high-dose intravenous glucocorticoids. Arch Dermatol 132:1435–1439PubMedGoogle Scholar
  109. 109.
    Werth VP, Fivenson D, Pandya AG et al (2008) Multicenter randomized, double-blind, placebo-controlled, clinical trial of dapsone as a glucocorticoid-sparing agent in maintenance-phase pemphigus vulgaris. Arch Dermatol 144:25–32PubMedGoogle Scholar
  110. 110.
    Whitworth JA (1987) Mechanisms of glucocorticoid-induced hypertension. Kidney Int 31:1213–1224PubMedGoogle Scholar
  111. 111.
    Yang SK, Hong M, Baek J et al (2014) A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat Genet 46:1017–1020PubMedPubMedCentralGoogle Scholar
  112. 112.
    Zimmermann J, Bahmer F, Rose C et al (2010) Clinical and immunopathological spectrum of paraneoplastic pemphigus. J Dtsch Dermatol Ges 8:598–605PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik für Dermatologie, Allergologie und VenerologieUniversitätsklinikum Schleswig-Holstein, Campus LübeckLübeckDeutschland
  2. 2.Lübecker Institut für Experimentelle Dermatologie (LIED)Universität zu LübeckLübeckDeutschland

Personalised recommendations