Skin damage by tropospheric ozone

  • K. B. Fuks
  • B. Woodby
  • G. ValacchiEmail author


Tropospheric (ground level) ozone (O3) is a secondary pollutant, emerging from other pollutants in the sunshine. Exposure to O3 correlates with higher pulmonary and cardiovascular mortality and affects reproductive health and the central nervous system acutely and chronically. Skin might be a potentially overlooked target organ of ambient O3. The experimental evidence suggests a positive correlation of O3 exposure with oxidative damage, impaired antioxidant defence and proinflammatory response in the skin. In time series studies it was observed that acute rises in O3 levels correlated with seeking medical help for skin conditions; however, whether these findings are specific to O3, is not yet clear. There is preliminary epidemiological evidence that long-term exposure to O3 is associated with premature skin aging. This finding was independent of co-exposure to other environmental factors affecting skin (e.g. ultraviolet radiation and air pollution). As concentrations of O3 are rising in many regions of the world, adverse cutaneous effects of O3 present a relevant public health concern.


Air pollution Skin aging Skin wrinkling Oxidative stress Peroxidation 

Hautschäden durch troposphärisches Ozon


Troposphärisches, das heißt bodennahes Ozon (O3) ist ein sekundärer Schadstoff, der durch Sonnenlicht aus anderen Schadstoffen hervorgeht. Die O3-Exposition ist mit einer erhöhten pulmonalen und kardiovaskulären Mortalität assoziiert und beeinträchtigt die reproduktive Gesundheit sowie das zentrale Nervensystem, dies sowohl akut als auch chronisch. Die Haut könnte ein potenziell verkanntes Zielorgan von O3 aus der Umwelt sein. Experimentelle Daten deuten auf einen positiven Zusammenhang zwischen der O3-Exposition und oxidativen Schäden, einem gestörten antioxidativen Schutz und einer proinflammatorischen Reaktion in der Haut hin. In Zeitreihenanalysen korrelierten akute Anstiege der O3-Konzentration mit medizinischen Konsultationen wegen Hauterkrankungen; ob diese Ergebnisse spezifisch für Ozon sind, ist allerdings noch nicht sicher. Es gibt erste epidemiologische Belege dafür, dass die langfristige O3-Exposition mit einer vorzeitigen Hautalterung assoziiert ist. Dieser Befund war unabhängig von der Koexposition gegenüber anderen hautschädigenden Umweltfaktoren, wie etwa ultravioletter Strahlung und Luftverschmutzung mit anderen Schadstoffen. Da die O3-Konzentrationen in vielen Gegenden der Welt ansteigen, sind schädliche Wirkungen von O3 auf die Haut ein relevantes Problem für die öffentliche Gesundheit.


Luftverschmutzung Hautalterung Faltenbildung der Haut Oxidativer Stress Peroxidation 


Compliance with ethical guidelines

Conflict of interest

K. Fuks, B. Woodby and G. Valacchi declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Jenkin ME, Clemitshaw KC (2002) Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer. In: Air Pollution Science for the 21st CenturyGoogle Scholar
  2. 2.
    EEA (2017) Air quality in Europe—2017 report. EEA Technical Report. European Environment Agency, Copenhagen, p 80 (Available from: Scholar
  3. 3.
    Brönnimann S, Neu U (1997) Weekend-weekday differences of near-surface ozone concentrations in Switzerland for different meteorological conditions. Atmos Environ 31(8):1127–1135 (, cited 2013 Oct 13)CrossRefGoogle Scholar
  4. 4.
    EU (2008) Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off J Eur Communities 152:1–43Google Scholar
  5. 5.
    WHO (2005) Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxideGoogle Scholar
  6. 6.
    Lange SS, Mulholland SE, Honeycutt ME (2018) What are the net benefits of reducing the ozone standard to 65 ppb? An alternative analysis. Int J Environ Res Public Health 15(8):1–31CrossRefGoogle Scholar
  7. 7.
    WHO (2000) Air quality guidelines for Europe. WHO Regional Publications, European Series, No. 91 (x + 273 pages, Scholar
  8. 8.
    U.S. EPA (2013) Integrated science assessment (ISA) of ozone and related photochemical oxidants. Final Report, Feb 2013, EPA/600/R-10/076F, vol 600. U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  9. 9.
    Bell ML, Samet JM, Dominici F (2004) Time-series studies of particulate matter. Annu Rev Public Health 25:247–280 (, cited 2013 Jan 29)CrossRefGoogle Scholar
  10. 10.
    World Health Organization Regional Office for Europe (2013) Review of evidence on health aspects of air pollution—REVIHAAP Project. Technical ReportGoogle Scholar
  11. 11.
    Krutmann J, Bouloc A, Sore G, Bernard BA, Passeron T (2017) The skin aging exposome. J Dermatol Sci 85(3):152–161. CrossRefPubMedGoogle Scholar
  12. 12.
    Valacchi G (2010) Effect of ozone on cutaneous tissues. In: Farage MA, Miller KW, Maibach HI (eds) Textbook of aging skin. Springer, Berlin, Heidelberg, pp 411–420 CrossRefGoogle Scholar
  13. 13.
    Valacchi G, Van der Vliet A, Schock BC, Okamoto T, Obermuller-Jevic U, Cross CE et al (2002) Ozone exposure activates oxidative stress responses in murine skin. Toxicology 179(1–2):163–170CrossRefGoogle Scholar
  14. 14.
    Fakhrzadeh L, Laskin JD, Laskin DL (2004) Ozone-induced production of nitric oxide and TNF-alpha and tissue injury are dependent on NF-kappaB p50. Am J Physiol Lung Cell Mol Physiol 287(2):L279–L285CrossRefGoogle Scholar
  15. 15.
    Thiele JJ, Hsieh SN, Briviba K, Sies H (1999) Protein oxidation in human stratum corneum: Susceptibility of keratins to oxidation in vitro and presence of a keratin oxidation gradient in vivo. J Invest Dermatol 113(3):335–339. CrossRefPubMedGoogle Scholar
  16. 16.
    Valacchi G, Pagnin E, Corbacho AM, Olano E, Davis PA, Packer L et al (2004) In vivo ozone exposure induces antioxidant/stress-related responses in murine lung and skin. Free Radic Biol Med 36(5):673–681CrossRefGoogle Scholar
  17. 17.
    Valacchi G, Pagnin E, Okamoto T, Corbacho AM, Olano E, Davis PA et al (2003) Induction of stress proteins and MMP-9 by 0.8 ppm of ozone in murine skin. Biochem Biophys Res Commun 305(3):741–746CrossRefGoogle Scholar
  18. 18.
    Fortino V, Maioli E, Torricelli C, Davis P, Valacchi G (2007) Cutaneous MMPs are differently modulated by environmental stressors in old and young mice. Toxicol Lett 173(2):73–79CrossRefGoogle Scholar
  19. 19.
    Caley MP, Martins VLC, O’Toole EA (2015) Metalloproteinases and wound healing. Adv Wound Care 4(4):225–234. CrossRefGoogle Scholar
  20. 20.
    Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M (2016) Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci 17(6):E868CrossRefGoogle Scholar
  21. 21.
    Xu X, Wang Y, Chen Z, Sternlicht MD, Hidalgo M, Steffensen B (2005) Matrix metalloproteinase-2 contributes to cancer cell migration on collagen. Cancer Res 65(1):130–136 ( Scholar
  22. 22.
    Xu F, Yan S, Wu M, Li F, Xu X, Song W et al (2011) Ambient ozone pollution as a risk factor for skin disorders. Br J Dermatol 165(1):224–225CrossRefGoogle Scholar
  23. 23.
    Larrieu S, Lefranc A, Gault G, Chatignoux E, Couvy F, Jouves B et al (2009) Are the short-term effects of air pollution restricted to cardiorespiratory diseases? Am J Epidemiol 169(10):1201–1208 ( Scholar
  24. 24.
    Szyszkowicz M, Porada E, Kaplan GG, Rowe BH (2010) Ambient ozone and emergency department visits for cellulitis. Int J Environ Res Public Health 7(11):4078–4088 ( Scholar
  25. 25.
    Szyszkowicz M, Kousha T, Valacchi G (2016) Ambient air pollution and emergency department visits for skin conditions. Glob Dermatol 3(5):323–329 ( Scholar
  26. 26.
    Vierkötter A, Schikowski T, Ranft U, Sugiri D, Matsui M, Krämer U et al (2010) Airborne particle exposure and extrinsic skin aging. J Invest Dermatol 130(12):2719–2726CrossRefGoogle Scholar
  27. 27.
    Hüls A, Vierkötter A, Gao W, Krämer U, Yang Y, Ding A et al (2016) Traffic-related air pollution contributes to development of facial lentigines: further epidemiological evidence from caucasians and asians. J Invest Dermatol 136(5):1053–1056CrossRefGoogle Scholar
  28. 28.
    Hüls A, Schikowski T, Krämer U, Sugiri D, Stolz S, Vierkoetter A, Krutmann J (2015) Ozone exposure and extrinsic skin aging: results from the SALIA cohort. Abstract. J Invest Dermatol 135:S49–S57 ( Scholar
  29. 29.
    Fuks K, Hüls A, Sugiri D, Goebel J, Demuth I, Krämer U, Krutmann J, Schikowski T (2018) High environmental ozone levels and extrinsic skin aging. ISES-ISEE 2018 Joint Annual Meeting, Ottawa. Abstract P03.1280 (Abstract book available at: Scholar
  30. 30.
    Vierkötter A, Ranft U, Krämer U, Sugiri D, Reimann V, Krutmann J (2009) The SCINEXA: a novel, validated score to simultaneously assess and differentiate between intrinsic and extrinsic skin ageing. J Dermatol Sci 53(3):207–211 ( Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.IUF—Leibniz Research Institute for Environmental MedicineDüsseldorfGermany
  2. 2.Plant for Human Health Institute, NC Research CampusNorth Carolina State UniversityKannapolisUSA
  3. 3.Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly

Personalised recommendations