Advertisement

Der Hautarzt

, Volume 69, Issue 8, pp 662–673 | Cite as

S1-Leitlinie Intermittierende Pneumatische Kompression (IPK, AIK)

  • C. Schwahn-Schreiber
  • F. X. Breu
  • E. Rabe
  • I. Buschmann
  • W. Döller
  • G. R. Lulay
  • A. Miller
  • E. Valesky
  • S. Reich-Schupke
Leitlinien und Empfehlungen
  • 213 Downloads

Zusammenfassung

Unter Federführung der Deutschen Gesellschaft für Phlebologie e. V. (DGP) wurde im Januar 2018 in Kooperation mit weiteren Fachgesellschaften eine S1-Leitlinie zur intermittierenden pneumatischen Kompression (IPK) verabschiedet. Sie ersetzt die bisher existierende Leitlinie von 3/2005. Ziel der Leitlinie ist die Optimierung der Indikation und der therapeutischen Anwendung der IPK bei Gefäß- und Ödemerkrankungen. Es erfolgte eine ausgedehnte Literaturrecherche unter Berücksichtigung von Medline, existierenden Leitlinien sowie für das Thema relevanten, aber nicht gelisteten Arbeiten. Angesichts der vielfach methodisch schwachen Studienqualität mit oft kleinen Fallzahlen und heterogenen Behandlungsprotokollen lassen sich aus den vorhandenen Daten oft nur Empfehlungen unter Hinzuziehung der guten klinischen Praxis/Expertenkonsensus ableiten. Die apparative Anwendung pneumatischer Wechseldrücke dient der Thromboembolieprophylaxe, Entstauungstherapie bei Ödemerkrankungen und der positiven Beeinflussung der arteriellen und venösen Durchblutung mit Verbesserung der klinischen Symptome und schnellerer Ulkusheilung im ambulanten und stationären Bereich. Die eingesetzten Geräte und die Therapieschemata unterscheiden sich abhängig von ihrer Indikation und Ziellokalisation. Sie können ambulant und stationär sowie bei langfristiger Indikation auch als Heimgeräte eingesetzt werden. Eine Soll-Indikation besteht bei der Thromboseprophylaxe. Bei schwerer chronisch venöser Insuffizienz im Stadium C4b bis C6, beim Extremitätenlymphödem additiv und bei peripherer arterieller Verschlusskrankheit (pAVK) mit stabiler Claudicatio intermittens oder kritischer Ischämie sollte die IPK eingesetzt werden Bei posttraumatischen Ödemen, therapieresistenten venös bedingten Ödemen, beim Lipödem und bei Hemiplegie mit sensorischer Störung und Ödem kann die IPK zum Einsatz kommen. Absolute und relative Kontraindikationen zur IPK müssen berücksichtigt und Risiken beachtet und – soweit möglich – vermieden werden. Unerwünschte Ereignisse treten bei korrekter Anwendung der IPK extrem selten auf. Sie ist bei richtiger Indikationsstellung und Anwendung – auch additiv – eine effektive und sichere Therapiemethode insbesondere in der Behandlung der beschriebenen Gefäß- und Ödemerkrankungen sowie der Thromboseprophylaxe.

Schlüsselwörter

Apparativ intermittierende Kompression Ödemerkrankungen Chronisch venöse Insuffizienz Lymphödem Thromboseprophylaxe 

S1 guideline on intermittent pneumatic compression (IPC)

Abstract

Under the direction of the German Society of Phlebology (Deutsche Gesellschaft für Phlebologie) and in cooperation with other specialist associations, the S1 guideline on intermittent pneumatic compression (IPC) was adopted in January 2018. It replaces the previous guideline from March 2005. The aim of the guideline is to optimize the indication and therapeutic use of IPC in vascular diseases and edema. An extensive literature search of MEDLINE, existing guidelines, and work relevant to the topic was performed. In view of the often methodologically weak study quality with often small numbers of cases and heterogeneous treatment protocols, recommendations can often only be derived from the available data using good clinical practice/expert consensus. Intermittent pneumatic compression is used for thromboembolism prophylaxis, decongestive therapy for edema, and to positively influence arterial and venous circulation to improve clinical symptoms and accelerate ulcer healing in both the outpatient and inpatient care setting. The therapy regimens and devices used depend on the indication and target location. They can be used as outpatient and inpatient devices as well as at home for long-term indications. A target indication is thrombosis prophylaxis. IPC should be used in severe chronic venous insufficiency (stages C4b to C6), in extremity lymphedema as an add-on therapy and in peripheral arterial occlusive disease (PAOD) with stable intermittent claudication or critical ischemia. IPC can be used in post-traumatic edema, therapy-resistant venous edema, lipedema and hemiplegia with sensory deficits and edema. Absolute and relative contraindications to IPC must be taken into account and risks considered and avoided as far as possible. Adverse events are extremely rare if IPC is used correctly. If the indication and application are correct—also as an add-on therapy—it is a safe and effective treatment method, especially for the treatment of the described vascular diseases and edema as well as thrombosis prophylaxis.

Keywords

Intermittent pneumatic compression devices Edema Chronic venous insufficiency Lymphedema Thrombosis prophylaxis 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Schwahn-Schreiber, F.X. Breu, E. Rabe, I. Buschmann, W. Döller, G.R. Lulay, A. Miller, E. Valesky und S. Reich-Schupke geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Adams KE, Rasmussen JC, Darne C (2010) Direct evidence of lymphatic function improvement after advanced pneumatic compression device treatment of lymphedema. Biomed Opt Expr 1(1):114CrossRefGoogle Scholar
  2. 2.
    Airaksinen O, Kolari TJ, Miettinen H (1990) Elastic bandages and intermittent pneumatic compression for treatment of acute ankle sprains. Arch Phys Med Rehabil 71:380–383PubMedGoogle Scholar
  3. 3.
    Almstedt HC, Lewis ZH (2016) Intermittent pneumatic compression and Bone mineral density: an exploratory study. J Sport Rehabil 25(1):1–6PubMedCrossRefGoogle Scholar
  4. 4.
    Alvarez O, Wendelken M, Markowitz L, Parker R, Comfort C (2012) Effectiveness of intermittent pneumatic compression for the treatment of venous ulcers in subjects with secondary (acquired) lymphedema. Vein 5(1):32–34Google Scholar
  5. 5.
    Alvarez OM, Wendelken ME, Markowitz L, Comfort C (2015) Effect of high-pressure, intermittent pneumatic compression for the treatment of peripheral arterial disease and critical limb ischemia in patients without a surgical option. Wounds 27(11):293–301PubMedGoogle Scholar
  6. 6.
    Anand A (2000) Complications associated with intermittent pneumatic compression device. Anesthesiology 93:1556–1557PubMedCrossRefGoogle Scholar
  7. 7.
    Arcelus JI, Caprini JA, Sehgal IR, Reyna JJ (2001) Home use of impulse compression of the foot and compression stockings in the treatment of chronic venous insufficiency. J Vasc Surg 34(5):805PubMedCrossRefGoogle Scholar
  8. 8.
    Armstrong DG, Nguyen HC (2000) Intermittent pneumatic compression promoted healing in foot infections. Arch Surg 135:1405–1409PubMedCrossRefGoogle Scholar
  9. 9.
    van Bemmelen PS, Choudry RG, Salvatore MD, Goldenberg M, Goldman BI, Blebea J (2007) Long-term intermittent compression increases arteriographic collaterals in a rabbit model of femoral artery occlusion. Eur J Vasc Endovasc Surg 34(3):340–346PubMedCrossRefGoogle Scholar
  10. 10.
    Bergan JJ, Sparks S, Angle N (1998) A comparison of compression pumps in the treatment of lymphedema. J Vasc Surg 32:455–462CrossRefGoogle Scholar
  11. 11.
    Berliner E, Ozbilgin B, Zarin DA (2003) A systemic review of pneumatic compression for treatment of chronic venous insufficiency and venous ulcers. J Vasc Surg 37:539–544PubMedCrossRefGoogle Scholar
  12. 12.
    Berni A, Tromba L, Falvo L, Tartaglia F, Sgueglia M, Blasi S, Polichetti P (2009) Randomized study on the effects of different strategies of intermittent pneumatic compression for lower limb claudication. G Chir 30(6–7):269–273PubMedGoogle Scholar
  13. 13.
    Boris M, Weindorf S, Lasinski BB (1998) The risk of genital edema after external pump compression for lower limb lymphedema. Lymphology 31:15–20PubMedGoogle Scholar
  14. 14.
    Breu FX, Zelikovski A, Loberman Z, Rauh G (2014) Wirksamkeit und Sicherheit einer neuen pneumatischen Kompressionstherapie bei peripherer arterieller Verschlusskrankheit mit Claudicatio intermittens. Phlebologie 43:5–11CrossRefGoogle Scholar
  15. 15.
    Cambier DL, De Corte E, Daniels LA et al (2003) Treating sensory impairment in the post-stoke upper limb with intermittent pneumatic compression. Clin Rehabil 17:14–20PubMedCrossRefGoogle Scholar
  16. 16.
    Carli AB, Kaya E, Turgut H, Selek MB (2014) Letter to the editor. Folliculitis associated with intermittent pneumatic compression. Yonsei Med J 55:545–554PubMedCentralCrossRefGoogle Scholar
  17. 17.
    Caschman J, Blagg S, Bishay M (2004) The efficacy of the A‑V Impulse system in the treatment of posttraumatic swelling following ankle fracture: a prospective randomized controlled study. J Orthop Trauma 18(9):596–601PubMedCrossRefGoogle Scholar
  18. 18.
    Challis MJ, Jull GJ, Stanton WR, Welsh MK (2007) Cyclic pneumatic soft-tissue compression enhances recovery following fracture of the distal radius: a randomised controlled trial. Aust J Physiother 53(4):247–252PubMedCrossRefGoogle Scholar
  19. 19.
    Chang ST, Hsu JT, Chu CM, Pan KL, Jang SJ, Lin PC, Hsu HC, Huang KC (2012) Using intermittent pneumatic compression therapy to improve quality of life for symptomatic patients with infrapopliteal diffuse peripheral obstructive disease. Circ J 76(4):971–976PubMedCrossRefGoogle Scholar
  20. 20.
    Coleridge Smith P, Sarin S, Hasty J, Scurr JH (1990) Sequential gradient pneumatic compression: enhances venous ulcer healing:a randomized trial. Surgery 108:871–875Google Scholar
  21. 21.
    Coleridge Smith P, Sarin S, Hasty J, Scurr JH (1988) Improved venous ulcer healing using intermittent pneumatic compression. Phlebologie 41(4):788–789Google Scholar
  22. 22.
    Comerota AJ (2011) Intermittent pneumatic compression: physiologic and clinical basis to improve management of venous leg ulcers. J Vasc Surg 53(4):1121–1129PubMedCrossRefGoogle Scholar
  23. 23.
    Dabrh AAM, Steffen MW, Asi N, Undavalli C, Wang Z, Elamin MB, Conte MS, Murad MH (2015) Nonrevascularization-based treatments in patients with severe or critical limb ischemia. J Vasc Surg 62(5):1330–1339PubMedCrossRefGoogle Scholar
  24. 24.
    Dahl J, Li J, Bring DK, Renström P, Ackermann PW (2007) Intermittent pneumatic compression enhances neurovascular ingrowth and tissue proliferation during connective tissue healing: a study in the rat. J Orthop Res 25(9):1185–1192PubMedCrossRefGoogle Scholar
  25. 25.
    Delis KT, Nicolaides AN, Wolfe JH et al (2000) Improving walking ability and ankle brachial pressure indices in symptomatic peripheral vascular disease with intermittent pneumatic foot compression. J Vasc Surg 31:650–661PubMedCrossRefGoogle Scholar
  26. 26.
    Delis KT, Nicolaides N (2005) Effect of intermittent pneumatic compression of foot and calf on walking distance, hemodynamics and quality of life in patients with arterial claudication. Ann Surg 241:431–441PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Deutsche Diabetes Gesellschaft, Evidenzbasierte Diabetes-Leitlinie DDG (2016) Diabetisches Fußsyndrom, Update 2008, Diagnostik, Therapie, Verlaufskontrolle und Prävention des diabetischen Fußsyndroms. https://www.kvwl.de/arzt/recht/.../diabetes_fuss_anlage_01.pdf. Zugegriffen: 26.06.2017Google Scholar
  28. 28.
    Deutsche Diabetes Gesellschaft, Nationale Versorgungsleitlinie Typ-2-Diabetes: Präventions-und Behandlungsstrategien für Fußkomplikationen, NVL-Programm Stand 30.11.2006, Registernummer nvl-001cGoogle Scholar
  29. 29.
    Deutsche Gesellschaft für Lymphologie und Gesellschaft Deutschsprachiger Lymphologen. S2k Leitlinie „Diagnostik und Therapie des Lymphödems“ AWMF Reg.- Nr. 058–001. Stand Mai 2017.Google Scholar
  30. 30.
    Deutsche Gesellschaft für Phlebologie. (2015) S1-Leitlinie Lipödem AWMF Registernummer 037–012 ICD 10Google Scholar
  31. 31.
    Deutsche Gesellschaft für Wundheilung und Wundbehandlung e. V. (2012) Lokaltherapie chronischer Wunden bei Patienten mit den Risiken periphere arterielle Verschlusskrankheit, Diabetes mellitus, chronische venöse Insuffizienz. AWMF-Register Nr. 091/001 Klasse, S 3Google Scholar
  32. 32.
    Dillon RS (1986) Treatment of resistant venous stasis ulcers and dermatitis with the enddiastolic pneumatic compression boot. Angiology 37:47–56PubMedCrossRefGoogle Scholar
  33. 33.
    Dini D, Del Mastro L, Gozza A et al (1998) The role of pneumatic compression in the treatment of postmastectomy lymphedema: a randomized phase III study. Ann Oncol 9:187–190PubMedCrossRefGoogle Scholar
  34. 34.
    Dodds MK, Daly ABA, Ryan K, D’Souza L (2014) Effectiveness of ‚in-cast‘ pneumatic intermittent pedal compression for the pre-operative management of closed ankle fractures: a clinical audit. Foot Ankle Surg 20:40–43PubMedCrossRefGoogle Scholar
  35. 35.
    Dolibog P, Franek A, Taradaj J, Dolibog P, Blaszczak E, Polak A, Brzezinska-Wcislo L, Hrycek A, Urbanek T, Ziaja J, Kolanko M (2013) A comparative clinical study on five types of compression therapy in patients with venous leg ulcers. Int J Med Sci 11(1):34–43PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Dolibog P, Franek A, Taradaj J, Polak A, Dolibog P, Blaszczak E, Wcislo L, Hrycek A, Urbanek T, Ziaja J, Kolanko M (2013) A randomized, controlled clinical pilot study comparing three types of compression therapy to treat venous leg ulcers in patients with superficial and/or segmental deep venous reflux. Ostomy Wound Manage 59(8):22–30PubMedGoogle Scholar
  37. 37.
    Doyle S, Bennett S, Fasoli SE, McKenna KT (2010) Interventions for sensory impairment in the upper limb after stroke. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD006331.pub2 (Review)PubMedCentralCrossRefPubMedGoogle Scholar
  38. 38.
    Encke A, Haas S, Kopp I et al (2017) S3-Leitlinie Prophylaxe der venösen Thromboembolie (VTE). AWMF Leitlinien-Register Nr. 003/001. www.awmf.org/leitlinien/detail/II/003-001 Google Scholar
  39. 39.
    Feldman JL, Stout NL, Wanchai A, Stewart BR, Cormier JN, Armer JM (2012) Intermittent pneumatic compression therapy: a systemic review. Lymphology 45:13–15PubMedGoogle Scholar
  40. 40.
    Finnane A, Janda M, Hayes SC (2015) Review of the evidence of lymphedema treatment effect. Am J Phys Med Rehabil 94(6):483–498PubMedCrossRefGoogle Scholar
  41. 41.
    Ginsberg JS, Magier D, Mackinnon B et al (1999) Intermittent compression units for severe post-phlebitic syndrome: a randomized crossover study. CMAJ 160:1303–1306PubMedPubMedCentralGoogle Scholar
  42. 42.
    Ginsberg JS, Brill-Edwards P, Kowalchuk G, Hirsh J (1989) Intermittent compression units for the postphlebitic Syndrome. A pilot study. Arch Intern Med 149:1651PubMedCrossRefGoogle Scholar
  43. 43.
    GKV Spitzenverband. Hilfsmittelverzeichnis. https://hilfsmittel.gkv-spitzenverband.de/hmvAnzeigen_input.action, Zugriff vom 20. Juni 2017 und
  44. 44.
    Grieveson S (2003) Intermittent pneumatic compression pump settings for the optimum reduction of oedema. J Tissue Viability 13:98–110PubMedCrossRefGoogle Scholar
  45. 45.
    Griffin M, Kakkos SK, Geroulakos G, Nicolaides AN (2007) Comparison of three intermittent pneumatic compression systems in patients with varicose veins: a hemodynamic study. Int Angiol 26(2):158–164PubMedGoogle Scholar
  46. 46.
    Haghighat S, Lotfi-Tokaldany M, Yunesian M, Akbari ME, Nazemi F, Weiss J (2010) Comparing two treatment methods for post mastectomy lymphedema: complex decongestive therapy alone and in combination with intermittent pneumatic compression. Lymphology 43(1):25–33PubMedGoogle Scholar
  47. 47.
    Handoll HH, Elliott J (2015) Rehabilitation for distal radial fractures in adults. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD003324.pub3 CrossRefPubMedGoogle Scholar
  48. 48.
    Herpertz U (1997) Krankheitsspektrum des Lipödems an einer Lymphologischen Fachklinik – Erscheinungsformen, Mischbilder und Behandlungsmöglichkeiten. Vasomed 5:301–307Google Scholar
  49. 49.
    Ho CK, Sun MP, Au TW, Chiu CS (2006) Pneumatic pump reduces leg wound complications in cardiac patients. Asian Cardiovasc Thorac Ann 14(6):452–457PubMedCrossRefGoogle Scholar
  50. 50.
    Husmann M, Willenberg T, Keo HH, Spring S, Kalodiki E, Delis KT (2008) Integrity of venoarteriolar reflex determines level of microvascular skin flow enhancement with intermittent pneumatic compression. J Vasc Surg 48(6):1509–1513PubMedCrossRefGoogle Scholar
  51. 51.
    International Society Of Lymphology (2013) Consensus document: the diagnosis and treatment of peripheral lymphedema: 2013. Lymphology 46:1–11Google Scholar
  52. 52.
    Kakkos SK, Nicolaides AN, Griffin M, Geroulakos G (2005) Comparison of two intermittent pneumatic compression systems. A hemodynamic study. Int Angiol 24(4):330–335PubMedGoogle Scholar
  53. 53.
    Kavros SJ, Delis KT, Turner NS, Voll AE, Liedl DA, Gloviczki P, Rooke TW (2008) Improving limb salvage in critical ischemia with intermittent pneumatic compression: a controlled study with 18-month follow-up. J Vasc Surg 47(3):543–549PubMedCrossRefGoogle Scholar
  54. 54.
    Keehan R, Guo S, Ahmad R, Bould M (2013) Impact of intermittent pneumatic foot pumps on delay to surgery following ankle fracture. Foot Ankle Surg 19:173–176PubMedCrossRefGoogle Scholar
  55. 55.
    Khanna A, Gougoulias N, Maffulli N (2008) Intermittent pneumatic compression in fracture and soft-tissue injuries healing. Br Med Bull 88(1):147–156PubMedCrossRefGoogle Scholar
  56. 56.
    Klein MJ, Alexander MA, Wright JM, Redmond CK, LeGasse AA (1988) Treatment of adult lower extremity lymphedema with the Wright linear pump statistical analysis of a clinical trial. Arch Phys Med Rehabil 69:202–206PubMedGoogle Scholar
  57. 57.
    Kohl P (2010) Reducing leg oedema after femoro-popliteal bypass surgery: a challenge. Eur J Vasc Endovasc Surg 40(5):643–644CrossRefGoogle Scholar
  58. 58.
    Kolari PI, Pekanmaki K (1986) Intermittent pneumatic compression in healing of venous ulcers. Lancet 2:1108PubMedCrossRefGoogle Scholar
  59. 59.
    Kumar S, Walker MA (2002) The effects of intermittent pneumatic compression on the arterial and venous system of the lower limb: a review. J Tissue Viability 12(2):58–60, 62–6 (Review)PubMedCrossRefGoogle Scholar
  60. 60.
    Kumar S, Samraj K, Nirujogi V, Budnik J, Walker MA (2002) Intermittent pneumatic compression as an adjuvant therapy in venous ulcer disease. J Tissue Viability 12(2):42–44, 46, 48 (passim)PubMedCrossRefGoogle Scholar
  61. 61.
    Labropoulos N, Leon LR Jr, Bhatti A, Melton S, Kang SS, Mansour AM, Borge M (2005) Hemodynamic effects of intermittent pneumatic compression in patients with critical limb ischemia. J Vasc Surg 42(4):710–716PubMedCrossRefGoogle Scholar
  62. 62.
    Lachmann EA, Rook JL, Tunkel R et al (1992) Complications associated with intermittent pneumatic compression. Arch Phys Med Rehabil 73:482–485PubMedGoogle Scholar
  63. 63.
    Lattimer CR, Azzam M, Kalodiki E, Xu XY, Geroulakos G (2014) Hemodynamic changes in the femoral vein with increasing outflow resistance. J Vasc Surg Venous Lymphat Disord 2(1):26–33PubMedCrossRefGoogle Scholar
  64. 64.
    Lattimer CR, Kalodiki E, Azzam M, Geroulakos G (2015) Pneumatic thigh compression reduces calf volume and augments the venous return. Phlebology 30(5):316–322PubMedCrossRefGoogle Scholar
  65. 65.
    Lawall H, Huppert H, Rümenapf G (2017) S3 Leitlinie „Diagnostik, Therapie und Nachsorge der pAVK“; AWMF-RegisterNr. 065-003Google Scholar
  66. 66.
    Manfredini F, Malagoni AM, Felisatti M, Mandini S, Lamberti N, Manfredini R, Mascoli F, Basaglia N, Zamboni P (2014) Acute oxygenation changes on ischemic foot of a novel intermittent pneumatic compression device and of an existing sequential device in severe peripheral arterial disease. BMC Cardiovasc Disord 31(14):40CrossRefGoogle Scholar
  67. 67.
    Marlborough F, Allouni A, Erdmann M (2014) An unusual referral with skin loss following intermittent pneumatic compression therapy. J Plast Reconstr Aesthet Surg 67(5):e136–e137PubMedCrossRefGoogle Scholar
  68. 68.
    Mc Grory B, Burke DM (2000) Peroneal nerve palsy following intermittent sequential pneumatic compression. Orthopedics 23:1103–1105Google Scholar
  69. 69.
    McCulloch JM, Marler KC, Neal MB, Phifer TJ (1994) Intermittent pneumatic compression improves venous ulcer healing. Adv Wound Care 7(4):22–26PubMedGoogle Scholar
  70. 70.
    McIlhone S, Ukra H, Karim A, Vratchovski V (2012) Soft tissue injury to the sole of the foot secondary to a retained AV impulse foot pump. Foot Ankle Surg 18(3):216–217PubMedCrossRefGoogle Scholar
  71. 71.
    Miranda F Jr, Perez MC, Castiglioni ML et al (2001) Effect of sequential intermittent, pneumatic compression on both leg lymphe-dema volume and on lymph transport as semi-quantitatively evaluated by lymphoscintigraphy. Lymphology 34:135–141PubMedGoogle Scholar
  72. 72.
    Mokhtar S, Azizi ZA, Govindarajanthran N (2008) Prospective study to determine the effect of intermittent pneumatic foot and calf compression on popliteal artery peak systolic blood flow. Asian J Surg 31(3):124–129PubMedCrossRefGoogle Scholar
  73. 73.
    Moran PS, Teljeur C, Harrington P, Ryan M (2015) A systematic review of intermittent pneumatic compression for critical limb ischaemia. Vasc Med 20(1):41–50PubMedCrossRefGoogle Scholar
  74. 74.
    Mulder GD, Reis TM (1990) Venous ulcers: pathophysiology and medical therapy. Am Fam Physician 42:1323–1330PubMedGoogle Scholar
  75. 75.
    Muluk SC, Hirsch AT, Taffe EC (2013) Pneumatic compression device treatment of lower extremity lymphedema elicits improved limb volume and patient-reported outcomes. Eur J Vasc Endovasc Surg 46:480–487PubMedCrossRefGoogle Scholar
  76. 76.
    Nelson EA, Hilmann A, Thomas K (2014) Intermittent pneumatic compression for treating venous leg ulcers. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD001899.pub4 CrossRefPubMedGoogle Scholar
  77. 77.
    Nikolovska S, Arsovski A, Damevska K, Gocev G, Pavlova L (2005) Evaluation of two different intermittent pneumatic compression cycle settings in the healing of venous ulcers: a randomized trial. Med Sci Monit 11(7):CR337–CR343PubMedGoogle Scholar
  78. 78.
    O’Donnell MJ, McRae S, Kahn SR, Jualian JA, Kearon C, Mackinnon B, Magier D, Strulovich C, Lyons T, Robinson S, Hirsh J, Ginsberg JS (2008) Evulation of a venos-return assist device to treat severe postthrombotic syndrome (VENOPTS). A randomized controlled trial. Thromb Haemost 99:623–629PubMedCrossRefGoogle Scholar
  79. 79.
    Olszewski WL, Cwikla J, Zaleska M, Domaszewska-Szostek A, Gradalski T, Szopinska S (2011) Pathways of lymph and tissue fluidflow during intermittent pneumatic massage of lower limbs with obstructive lymphedema. Lymphology 44:54–64PubMedGoogle Scholar
  80. 80.
    Olszewski WL, Jain P, Ambujam G, Zaleska M, Cakala M, Gradalski T (2011) Tissue fluid pressure and flow during pneumatic compression in lymphedema of lower limbs. Lymphat Res Biol 9:2CrossRefGoogle Scholar
  81. 81.
    Öztürk Ç, te Slaa A, Dolmans DE, Ho GH, de Vries J, Mulder PG, van der Laan L (2012) Quality of life in perspective to treatment of postoperative edema after peripheral bypass surgery. Ann Vasc Surg 26(3):373–382PubMedCrossRefGoogle Scholar
  82. 82.
    Park SH, Silva M (2003) Effect of intermittent pneumatic soft-tissue compression on fracture-healing in an animal model. J Bone Joint Surg Am 85-A(8):1446–1453PubMedCrossRefGoogle Scholar
  83. 83.
    Parra RO (1987) Pressure necrosis form intermittent pneumatic-compression stockings. N Engl J Med 321:1615Google Scholar
  84. 84.
    Partsch H, Mostbeck A, Leitner G (1980) Experimentelle untersuchungen zur Wirkung einer Druckwellenmasage (Lymphapress) beim Lymphödem. Phlebol Proktol 9:124–128Google Scholar
  85. 85.
    Partsch H (2008) Intermittent pneumatic compression in immobile patients. Int Wound J 5(3):389–397PubMedCrossRefGoogle Scholar
  86. 86.
    Patterson RB, Cardullo P (2013) Superior hemodynamic performance of a thigh-length versus knee-length intermittent pneumatic compression device. J Vasc Surg Venous Lymphat Disord 1(3):276–279PubMedCrossRefGoogle Scholar
  87. 87.
    Pawlaczyk K, Gabriel M, Urbanek T, Dzieciuchowicz Ł, Krasiński Z, Gabriel Z, Olejniczak-Nowakowska M, Stanisić M (2015) Effects of intermittent pneumatic compression on reduction of postoperative lower extremity edema and normalization of foot microcirculation flow in patients undergoing arterial revascularization. Med Sci Monit 21:3986–3992PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Pekanmaki K, Kolari PJ, Kiistala U (1987) Intermittent pneumatic compression treatment for post-thrombotic leg ulcers. Clin Exp Dermatol 12:350–353PubMedCrossRefGoogle Scholar
  89. 89.
    Phillips JJ, Gordon SJ (2014) Conservative management of lymphedema in children: a systematic review. J Pediatr Rehabil Med 7:361–372PubMedGoogle Scholar
  90. 90.
    Pilch U, Wozniewski M, Szuba A (2009) Influece of compression cycle time and number of sleeve chambers on upper extremity, lymphedema volume reduction during intermittent pneumatic compression. Lymphology 42:26–35PubMedGoogle Scholar
  91. 91.
    Pittmann GR (1989) Peroneal nerve palsy following sequential pneumatic compression. JAMA 261:2201–2202CrossRefGoogle Scholar
  92. 92.
    Pohjola RT, Pekanmäki K, Kolari PJ (1995) Intermittent pneumatic compression of lymphoedema. Eur J Lymphol 5:87–90Google Scholar
  93. 93.
    Rabe E et al (2003) Apparative intermittierende Kompressionstherapie. Viavital, KölnGoogle Scholar
  94. 94.
    Ramaswami G, D’Ayala M, Hollier LH, Deutsch R, McElhinney AJ (2005) Rapid foot and calf compression increases walking distance in patients with intermittent claudication: results of a randomized study. J Vasc Surg 41(5):794–801PubMedCrossRefGoogle Scholar
  95. 95.
    Riccioni C, Sarcinella R, Palermo G, Izzo A, Liguori M, Koverech A, Messano M, Virmani A (2008) Evaluation of the efficacy of propionyl-L-carnitine versus pulsed muscular compressions in diabetic and non-diabetic patients affected by obliterating arteriopathy Leriche stage II. Int Angiol 27(3):253–259PubMedGoogle Scholar
  96. 96.
    Ridner S, Murphy B, Deng J et al (2010) Advanced pneumatic therapy in self-care of chronic lymphedema of the trunk. Lymphat Res Biol 8:209PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Rithalia SVS, Heath GH, Gonsalkorale M (2002) Evaluation of intermittent pneumatic compression systems. J Tissue Viability 12:52–57PubMedCrossRefGoogle Scholar
  98. 98.
    Rogan S, Taeymans J, Luginbuehl H, Aebi M, Mahnig S, Gebruers N (2016) Therapy modalities to reduce lymphoedema in female breast, cancer patients: a systematic review and meta-analysis. Breast Cancer Res Treat 159:1–14PubMedCrossRefGoogle Scholar
  99. 99.
    Roper TA, Redford S, Tallis RC (1999) Intermittent compression for the treatment of the oedematous hand in hemiplegic stroke: a randomized controlled trial. Age Ageing 28:9–13PubMedCrossRefGoogle Scholar
  100. 100.
    Rowland J (2000) Intermittent pump versus compression bandages in the treatment of venous leg ulcers. Aust N Z J Surg 70:110–113PubMedCrossRefGoogle Scholar
  101. 101.
    Schizas N, Li J, Andersson T, Fahlgren A, Aspenberg P, Ahmed M, Ackermann PW (2010) Compression therapy promotes proliferative repair during rat Achilles tendon immobilization. J Orthop Res 28(7):852–858PubMedGoogle Scholar
  102. 102.
    Schuler JJ, Maibenco T, Megerman J et al (1996) Treatment of chronic venous ulcers using sequential gradient intermittent pneumatic compression. Phlebology 111(11):6Google Scholar
  103. 103.
    Shao Y, Qi K, Zhou Q‑H, Zhong D‑S (2014) Intermittent pneumatic compression pump for breast cancer-related Lymphedema: a systematic review and meta-analysis of randomized controlled trials. Oncol Res Treat 37:170–174PubMedCrossRefGoogle Scholar
  104. 104.
    Shimizu Y, Kamada H, Sakane M, Aikawa S, Mutsuzaki H, Tanaka K, Mishima H, Ochiai N, Yamazaki M (2016) A novel apparatus for active leg exercise improves venous flow in the lower extremity. J Sports Med Phys Fitness 56(12):1592–1597PubMedGoogle Scholar
  105. 105.
    Siddiqui AU, Buchman TG, Hotchkiss RS (2000) Pulmonary embolism as an consequence of applying sequential compression device on legs in a patient asymptomatic of deep vein thrombosis. Anesthesiology 92:880–882PubMedCrossRefGoogle Scholar
  106. 106.
    te Slaa A, Dolmans DE, Ho GH, Mulder PG, van der Waal JC, de Groot HG, van der Laan L (2010) Evaluation of A‑V impulse technology as a treatment for oedema following polytetrafluoroethylene femoropopliteal surgery in a randomized controlled trial. Eur J Vasc Endovasc Surg 40(5):635–642CrossRefGoogle Scholar
  107. 107.
    Sultan S, Esan O, Fahy A (2008) Nonoperative active management of critical limb ischemia: initial experience using a sequential compression biomechanical device for limb salvage. Vascular 16(3):130–139PubMedCrossRefGoogle Scholar
  108. 108.
    Sultan S, Hamada N, Soylu E, Fahy A, Hynes N, Tawfick W (2011) Sequential compression biomechanical device in patients with critical limb ischemia and nonreconstructible peripheral vascular disease. Vasc Surg 54(2):440–446 (discussion 446–7)CrossRefGoogle Scholar
  109. 109.
    Sutkowska E, Wozniewski M, Gamian A, Gosk-Bierska I, Alexewicz P, Sutkowski K, Wysokinski WE (2009) Intermittent pneumatic compression in stable claudicants: effect on hemostasis and endothelial function. Int Angiol 28(5):373–379PubMedGoogle Scholar
  110. 110.
    Svensson BH, Frellsen MB, Basse PN, Bliddal H, Caspers J, Parby K (1993) Effect of pneumatic compression in connection with ergotherapeutic treatment of Colles’ fracture. A clinical controlled trial. Ugeskr Laeg 155(7):463–466PubMedGoogle Scholar
  111. 111.
    Szolnoky G, Borsos B, Bársony K, Balogh M, Kemény L (2008) Complete decongestive, physiotherapy with and without pneumatic compression for treatment of lipedema: a pilot study. Lymphology 41:40–44PubMedGoogle Scholar
  112. 112.
    Szolnoky G, Nagy N, Kovács RK, Dósa-Rácz E, Szabó A, Bársony K, Balogh M, Kemény L (2008) Complex decongestive physiotherapy decreases capillary fragility in lipedema. Lymphology 41:161–166PubMedGoogle Scholar
  113. 113.
    Szuba A, Achalu R, Rockson SG (2002) Decongestive lymphatic therapy for patients with breast carcinoma-associated lymphedema. A randomized, prospective study of a role for adjunctive intermittent pneumatic compression. Cancer 95:2260–2267PubMedCrossRefGoogle Scholar
  114. 114.
    Tamir L, Hendel D, Neyman C et al (1999) Sequential foot compression reduces low limb swelling and pain after total knee arthroplasty. J Arthroplast 14:333–338CrossRefGoogle Scholar
  115. 115.
    Taradaj J, Rosińczuk J, Dymarek R, Halski T, Schneider W (2015) Comparison of efficacy of the intermittent pneumatic compression with a high- and low-pressure application in reducing the lower limbs phlebolymphedema. Ther Clin Risk Manag 11:1545–1554PubMedPubMedCentralGoogle Scholar
  116. 116.
    Tawfick WA, Hamada N, Soylu E, Fahy A, Hynes N, Sultan S (2013) Sequential compression biomechanical device versus primary amputation in patients with critical limb ischemia. Vasc Endovascular Surg 47(7):532–539PubMedCrossRefGoogle Scholar
  117. 117.
    Thordarson DB, Ghalambor N, Perlman M (1997) Intermittent pneumatic pedal compression and edema resolution after acute ankle fracture: a randomized study. Foot Ankle Int 18:347–350PubMedCrossRefGoogle Scholar
  118. 118.
    Thordarson DB, Greene N, Shepherd L et al (1999) Facilitating edema resolution with a foot pump after calcaneus fracture. J Orthop Trauma 13:43–46PubMedCrossRefGoogle Scholar
  119. 119.
    Uzkeser H, Karatay S, Erdemci B, Koc M, Senel K (2015) Efficacy of manual lymphatic drainage and intermittent pneumatic compression pump use in the treatment of lymphedema after mastectomy: a randomized controlled trial. Breast Cancer 22:300–307PubMedCrossRefGoogle Scholar
  120. 120.
    Vanscheidt W, Ukat A, Partsch H (2009) Dose-response of compression therapy for chronic venous edema—higher pressures are associated with greater volume reduction: two randomized clinical studies. J Vasc Surg 49(2):395–402, 402.e1PubMedCrossRefGoogle Scholar
  121. 121.
    Werbel GB, Shybut GT (1986) Acute compartment syndrome caused by a malfunctioning pneumatic-compression boot. J Bone Joint Surg 68:1445–1446PubMedCrossRefGoogle Scholar
  122. 122.
    Williams KJ, Babber A, Ravikumar R, Davies AH (2017) Non-invasive management of peripheral arterial disease. Adv Exp Med Biol 906:387–406PubMedCrossRefGoogle Scholar
  123. 123.
    Williams KJ, Moore HM, Davies AH (2015) Haemodynamic changes with the use of neuromuscular electrical stimulation compared to intermittent pneumatic compression. Phlebology 30(5):365–372PubMedCrossRefGoogle Scholar
  124. 124.
    Won SH, Lee YK, Suh YS, Koo KH (2013) Extensive bullous complication associated with intermittent pneumatic compression. Yonsei Med J 54(3):801–802PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Zaki M, Elsherif M, Tawfick W, El Sharkawy M, Hynes N, Sultan S (2016) The role of sequential pneumatic compression in limb salvage in non-reconstructable critical limb Ischemia. Eur J Vasc Endovasc Surg 51(4):565–571PubMedCrossRefGoogle Scholar
  126. 126.
    Zaleska Marzanna, Olszewski WL, Durlik M (2014) The effectiveness of intermittent pneumatic compression in long-term therapy of lymphedema of lower limbs. Lymphat Res Biol 12(2):103–109PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Zaleska M, Olszewski ML, Cakala M, Cwikla J, Budlewski T (2015) Intermittent pneumatic compression enhances formation of edema tissue fluid channels in lymphedema of lower limbs. Lymphat Res Biol 13(2):146–153PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Zaleska M, Olszewski WL, Jain P, Gogia S, Rekha A, Mishra S, Durlik M (2013) Pressures and timing of intermittent pneumatic compression devices for efficient tissue fluid and lymph flow in limbs with Lymphedema. Lymphat Res Biol 11(4):227–232PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • C. Schwahn-Schreiber
    • 1
  • F. X. Breu
    • 2
  • E. Rabe
    • 3
  • I. Buschmann
    • 4
  • W. Döller
    • 5
  • G. R. Lulay
    • 6
  • A. Miller
    • 7
  • E. Valesky
    • 8
  • S. Reich-Schupke
    • 9
  1. 1.OtterndorfDeutschland
  2. 2.Venenzentrum am TegernseeGmund am TegernseeDeutschland
  3. 3.Klinik und Poliklinik für DermatologieBonnDeutschland
  4. 4.Klinik für Innere Medizin I – Kardiologie, Pulmologie, AngiologieStädtisches Klinikum Brandenburg GmbHBrandenburg an der HavelDeutschland
  5. 5.WolfsbergÖsterreich
  6. 6.Klinik für Gefäß- und Endovaskularchirurgie – Phlebologie – Lymphologie – Gefäß- und Lymphzentrum Nord-WestKlinikum Rheine/Mathias-SpitalRheineDeutschland
  7. 7.die hautexperten, PraxisBerlinDeutschland
  8. 8.Klinik für Dermatologie, Venerologie und AllergologieUniversitätsklinikum FrankfurtFrankfurt am MainDeutschland
  9. 9.Klinik für Dermatologie, Venerologie und Allergologie, Venenzentrum der Dermatologischen und Gefäßchirurgischen KlinikenRuhr-Universität BochumBochumDeutschland

Personalised recommendations