Advertisement

Einsatz künstlicher Intelligenz in der Thoraxchirurgie

Application of artificial intelligence in thoracic surgery

  • 49 Accesses

Zusammenfassung

Hintergrund

Der Einsatz künstlicher Intelligenz in der Medizin ist eine relativ neue Option, um eine verbesserte Behandlung von Patienten zu ermöglichen, und daher aktuell Mittelpunkt vieler Forschungsprojekte. Im klinischen Alltag beschränkt sich der Einsatz jedoch bislang noch mehrheitlich auf die Auswertung von Bildmaterial.

Fragestellung

In welcher Form ist der Einsatz künstlicher Intelligenz im Alltag der thoraxchirurgischen Behandlung möglich und wird bereits praktiziert?

Material und Methoden

Es wurde eine aktuelle Literaturrecherche durchgeführt.

Ergebnisse

Künstliche Intelligenz kann unter aktuellen Bedingungen am ehesten in der Diagnostik und Therapieplanung eingesetzt werden. Um einen flächendeckenden Einsatz zu ermöglichen sind aber eine Standardisierung der Datenerfassung und deren Auswertung notwendig.

Schlussfolgerungen

Zum jetzigen Zeitpunkt liegen vielversprechende Studienergebnisse vor. Die Implementierung in den chirurgischen Alltag ist aber bislang schwer möglich.

Abstract

Background

The application of artificial intelligence is a relatively new option to enable improved patient treatment in modern medicine and is therefore currently the focus of many research projects. In the clinical practice the application of artificial intelligence so far seems to be confined to the analysis of medical imaging.

Objective

In which form is the use of artificial intelligence possible in routine daily work in thoracic surgery and is already being practiced?

Material and methods

A search of the currently available literature was performed.

Results

Under current conditions artificial intelligence can best be used as part of diagnostics and treatment planning; however, in order to enable a comprehensive use standardization and evaluation of the centralized data collection are necessary.

Conclusion

At the present time promising study results are available but the implementation into the surgical routine has so far been very difficult.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Literatur

  1. 1.

    Harren K, Dittrich F, Reinecke F et al (2018) Digitalisierung und künstliche Intelligenz in Orthopädie und Unfallchirurgie. Orthopäde 47:1039–1054

  2. 2.

    Vogel T, Kohn N, Ostler D et al (2019) Modellgestützte Therapie in der Chirurgie. Chirurg 90:470–477

  3. 3.

    von Klot CAJ, Kuczyk MA (2019) Künstliche Intelligenz und neuronale Netze in der Urologie. Urologe 58:291–299

  4. 4.

    Schneider F, Weiller C (2018) Big Data und künstliche Intelligenz. Nervenarzt 89:859–860

  5. 5.

    Rabbani M, Kanevsky J, Kafi K et al (2018) Role of artificial intelligence in the care of patients with nonsmall lung cancer. Eur J Clin Invest 48:e12901

  6. 6.

    Tran BX, Latkin CA, Vu GT et al (2019) The current research landscape of the application of artifical intelligence in managing cerebrovascular and heart diseases: a bibliometric and content analysis. Int J Environ Res Public Health 16:2699

  7. 7.

    O’Sullivan S, Nevejans N, Allen C et al (2019) Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery. Int J Med Rob Comput Assist Surg 15:e1968

  8. 8.

    Simon G, DiNardo CD, Takahashi K et al (2019) Applying artificial intelligence to adress the knowledge gaps in cancer care. Oncologist 24:772–782

  9. 9.

    Heverhagen JT (2019) Künstliche Intelligenz: die Radiologie im Wandel der Zeit. Swiss Med Forum 19:56–58

  10. 10.

    He J, Baxter SL, Xu J et al (2019) The practical implementation of artificial intelligence technologies in medicine. Nat Med 25:30–36

  11. 11.

    Liang H, Tsui BY, Ni H et al (2019) Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat Med 25:433–438

  12. 12.

    Mirnezami R, Ahmed A (2018) Surgery 3.0, artificial intelligence and the next-generation surgeon. Br J Surg 105:463–465

  13. 13.

    Zirafa C, Romano G, Key TH et al (2019) The evolution of robotic thoracic surgery. Ann Cardiothorac Surg 8:201–2017

  14. 14.

    Dasgupta P (2018) New robots—cost, connectivity and artificial intelligence. BJU Int 122:349–350

  15. 15.

    Peters BS, Armijo PR, Krause C et al (2018) Review of emerging surgical robotic technology. Surg Endosc 32:1636–1655

  16. 16.

    Leschber G (2018) Video-assisted thoracic surgery: A global development. Chirurg 89:185–190

  17. 17.

    Kanzaki M (2019) Current status of robotic-assisted thoracoscopic surgery for lung cancer. Surg Today. https://doi.org/10.1007/s00595-019-01793-x

  18. 18.

    Wei S, Chen M, Chen N et al (2017) Feasibility and safety of robot-assisted thoracic surgery for lung lobectomy in patients with non-small cell lung cancer: a systematic review and meta-analysis. World J Surg Oncol 15:98

  19. 19.

    Bonaci T, Herron J, Yusuf T et al (2015) To make a robot secure: an experimental analysis of cyper security threats against teleoperated surgical robots (arXiv:1504.04339)

  20. 20.

    Muñoz-Largacha JA, Litle VR, Fernando HC (2016) Navigation bronchoscopy for diagnosis and small nodule location. J Thorac Dis 9(Suppl 2):S98–S103

  21. 21.

    Esteva H, Núñez TG, Rodríguez RO (2007) Neural networks and artificial intelligence in thoracic surgery. Thorac Surg Clin 17:359–367

  22. 22.

    Liu C, Liu X, Wu F et al (2018) Using artificial intelligence (Watson for oncology) for treatment recommendations amongst Chinese patients with lung cancer: feasibility study. J Med Internet Res 20:e11087

  23. 23.

    Khorrami M, Jain P, Bera K et al (2019) Predicting pathologic response to neoadjuvant chemoradiation in resectable stage III non-small cell lung cancer patients using computed tomography radiomic features. Cancer Treat Res 135:1–9

  24. 24.

    Ardila D, Kiraly AP, Bharadwaj S et al (2019) End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med 25:954–961

Download references

Author information

Correspondence to Dr. Dipl.-Oec. E. Hecker.

Ethics declarations

Interessenkonflikt

D. Herrmann, M. Oggiano und E. Hecker geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Herrmann, D., Oggiano, M. & Hecker, E. Einsatz künstlicher Intelligenz in der Thoraxchirurgie. Chirurg (2020) doi:10.1007/s00104-019-01089-3

Download citation

Schlüsselwörter

  • Deep learning
  • Machine learning
  • Künstliche neuronale Netzwerke
  • Computer aided diagnostic
  • Nichtkleinzelliges Bronchialkarzinom

Keywords

  • Deep learning
  • Machine learning
  • Artificial neural network
  • Computer-aided diagnostics
  • Non-small cell lung cancer