Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Entwicklung von Impfstoffen gegen Malaria – aktueller Stand

Development of malaria vaccines—state of the art

Zusammenfassung

Weltweit leben 3,1 Mrd. Menschen in Gebieten, in denen Malaria endemisch ist (Tropen, Subtropen). Jährlich erkranken etwa 200 Mio. Menschen, ca. 500.000 sterben daran. Betroffen sind vor allem Kinder. Um die Malaria zu kontrollieren und schlussendlich jegliche Neuinfektion zu verhindern, ist die Entwicklung wirksamer Impfstoffe von großer Bedeutung. In diesem Beitrag werden zunächst Hintergrundinformationen zur Geschichte der Impfstoffentwicklung, zur Malariaerkrankung und zu den Möglichkeiten der Therapie und Ausbreitungskontrolle gegeben. Der Hauptteil widmet sich dem aktuellen Forschungsstand zu Impfstoffen gegen den Erreger Plasmodium falciparum, gefolgt von einer ausführlichen Diskussion.

Malaria ist eine parasitäre Infektionskrankheit, die von Einzellern, sog. Plasmodien, verursacht wird. Es werden 5 humanpathogene Spezies unterschieden, von denen P. falciparum über 99 % der Erkrankungen in Afrika verursacht. Überträger (Vektor) ist die Anophelesmücke. Plasmodium bietet innerhalb seines Lebenszyklus verschiedene Ansatzpunkte für die Wirkung von Impfstoffen. Von den insgesamt ca. 70 Impfstoffkandidaten sind die präerythrozytären Impfstoffe, die in den Leberzyklus des Parasiten eingreifen, aktuell am weitesten entwickelt. Die von der Weltgesundheitsorganisation (WHO) angestrebte Wirksamkeit von mindestens 75 % wurde aber längst nicht erreicht.

Mit RTS,S/AS01 wird derzeit erstmals ein mäßig wirksamer Impfstoff großflächig eingesetzt. Schon jetzt ist offensichtlich, dass die Malaria nur im Zusammenspiel mit anderen Maßnahmen eingedämmt werden kann. Expositionsprophylaxe mit imprägnierten Moskitonetzen, der Einsatz von Insektiziden mit Residualeffekt in Innenräumen (Indoor Residual Spraying), die Vernichtung von Moskitobrutplätzen und schnelle Diagnose und Therapie der Erkrankung sind hier wichtige Elemente ebenso wie eine funktionierende Gesundheitsversorgung, die in den von Armut geprägten Gebieten oft nicht gewährleistet ist.

Abstract

Globally, 3.1 billion people live in areas endemic for malaria (the tropics and subtropics). Annually, around 200 million fall ill, and around 500,000 persons die as a result of this infection. Mainly children are the victims. In order to control and eventually prevent any new infection, the development of effective vaccines is pivotal. In this review, background information about the history of vaccine development and malaria disease as well as possibilities for therapy and control is given. In the main part of the article, an update on the development of vaccines against Plasmodium falciparum is provided followed by an extensive discussion.

Malaria is a parasitic infectious disease caused by the single cell organism Plasmodium. Five different Plasmodium species can induce disease in humans with P. falciparum being the origin for more than 99% of infections in Africa. The vector is the Anopheles mosquito. The life cycle of Plasmodium offers several approaches for vaccines to have an impact. Out of around 70 candidates, pre-erythrocytic vaccine candidates interfering with the liver phase of the parasite are the most developed. However, a vaccine with more than 75% efficacy, as required by the World Health Organization (WHO), is not yet in sight.

Currently, for the first time, a moderately efficacious vaccine (RTS,S/AS01) is being applied in large-scale operations. But it is obvious that malaria can only be controlled in combination with concurring measures. For example, the use of impregnated mosquito nets, indoor residual spraying, elimination of vector breeding sites, rapid diagnosis, and therapy of the infection as well as a functioning health system are important elements, which can hardly be guaranteed in areas characterized by poverty.

This is a preview of subscription content, log in to check access.

Abb. 1

Literatur

  1. 1.

    Sergent E, Sergent E (1910) Sur l’immunite sdans le paludismedes oiseaux. Conservation in vitro des sporozoites de plasmodium de Plasmodium relictum immmunite relative obtenue par inoculations de ces sporozoites. C R Acad Sci 151:407–409

  2. 2.

    Nussenzweig RS, Vanderberg J, Most H, Orton C (1967) Protective immunity produced by the injection of x‑irradiated sporozoites of plasmodium berghei. Nature 216(5111):160–162

  3. 3.

    Clyde DF, Most H, McCarthy VC, Vanderberg JP (1973) Immunization of man against sporozite-induced falciparum malaria. Am J Med Sci 266(3):169–177

  4. 4.

    Zavala F, Tam JP, Hollingdale MR et al (1985) Rationale for development of a synthetic vaccine against Plasmodium falciparum malaria. Science 228(4706):1436–1440

  5. 5.

    Nussenzweig RS, Godson GN, Nussenzweig V (1984) United States Patent Patent Number: 4,466,917 Date of Patent Aug. 21

  6. 6.

    Ballou WR, Cahill CP (2007) Two decades of commitment to malaria vaccine development: glaxosmithkline biologicals. American Society of Tropical Medicine and Hygiene. https://www.ncbi.nlm.nih.gov/books/NBK1706/. Zugegriffen: 1. Nov. 2019

  7. 7.

    Brown P Scientist whose dream of beating disease came true (1999) The Guardian. https://www.theguardian.com/uk/1999/jul/24/paulbrown. Zugegriffen: 1. Nov. 2019

  8. 8.

    Graves P, Gelband H (2006) Vaccines for preventing malaria (SPf66). Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD005966

  9. 9.

    Bojang KA, Obaro SK, Leach A et al (1997) Follow-up of Gambian children recruited to a pilot safety and immunogenicity study of the malaria vaccine SPf66. Parasite Immunol 19(12):579–581

  10. 10.

    Metzger WG, Haywood M, D’Alessandro U et al (1999) Serological responses of Gambian children to immunization with the malaria vaccine SPf66. Parasite Immunol 21(7):335–340

  11. 11.

    Moorthy VS, Newman RD, Okwo-Bele J‑M (2013) Malaria vaccine technology roadmap. Lancet 382(9906):1700–1701

  12. 12.

    Maher B (2008) Malaria: the end of the beginning. Nature 451(7182):1042–1046

  13. 13.

    von Seidlein L (2019) The advanced development pathway of the RTS,S/AS01 vaccine. Methods Mol Biol 2013:177–187

  14. 14.

    Adepoju P (2019) RTS,S malaria vaccine pilots in three African countries. Lancet 393(10182):1685

  15. 15.

    Robert Koch-Institut (RKI) (2017) Infektionsepidemiologisches Jahrbuch meldepflichtiger Krankheiten für 2017. www.rki.de/jahrbuch. Zugegriffen: 1. Nov. 2019

  16. 16.

    Lalremruata A, Magris M, Vivas-Martínez S et al (2015) Natural infection of Plasmodium brasilianum in humans: man and monkey share quartan malaria parasites in the Venezuelan Amazon. EBioMedicine 2(9):1186–1192

  17. 17.

    Metzger WG, Ehni H‑J, Kremsner PG, Mordmueller BG (2020) Experimental infections in humans—historical and ethical reflections. Trop Med Int Health. https://doi.org/10.1111/tmi.13320

  18. 18.

    Mordmüller B, Surat G, Lagler H et al (2017) Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature 542(7642):445–449

  19. 19.

    Müller O, Lu GY, von Seidlein L (2019) Geographic expansion of artemisinin resistance. J Travel Med. https://doi.org/10.1093/jtm/taz030

  20. 20.

    Romay-Barja M, Cano J, Ncogo P et al (2016) Determinants of delay in malaria care-seeking behaviour for children 15 years and under in Bata district, Equatorial Guinea. Malar J 15:187

  21. 21.

    Worrall E, Basu S, Hanson K (2005) Is malaria a disease of poverty? A review of the literature. Trop Med Int Health 10(10):1047–1059

  22. 22.

    Rothe C, Boecken G, Rosenbusch D et al (2019) Empfehlungen zur Malariaprophylaxe. Flug Reisemed 26(3):105–132

  23. 23.

    Trape JF, Rogier C, Konate L et al (1994) The Dielmo project: a longitudinal study of natural malaria infection and the mechanisms of protective immunity in a community living in a holoendemic area of Senegal. Am J Trop Med Hyg 51(2):123–137

  24. 24.

    Langhorne J, Ndungu FM, Sponaas A‑M, Marsh K (2008) Immunity to malaria: more questions than answers. Nat Immunol 9(7):725–732

  25. 25.

    WHO Tables of malaria vaccine projects globally. WHO. http://www.who.int/immunization/research/development/Rainbow_tables/en/. Zugegriffen: 11. Aug. 2019

  26. 26.

    Cockburn IA, Seder RA (2018) Malaria prevention: from immunological concepts to effective vaccines and protective antibodies. Nat Immunol 19(11):1199–1211

  27. 27.

    WHO Malaria vaccines. http://www.who.int/immunization/research/development/malaria/en/. Zugegriffen: 31. Juli 2019

  28. 28.

    Wilson KL, Flanagan KL, Prakash MD, Plebanski M (2019) Malaria vaccines in the eradication era: current status and future perspectives. Expert Rev Vaccines 18(2):133–151

  29. 29.

    Ballou WR, Rothbard J, Wirtz RA et al (1985) Immunogenicity of synthetic peptides from circumsporozoite protein of Plasmodium falciparum. Science 228(4702):996–999

  30. 30.

    Stewart VA, McGrath SM, Walsh DS et al (2006) Pre-clinical evaluation of new adjuvant formulations to improve the immunogenicity of the malaria vaccine RTS,S/AS02A. Vaccine 24(42–43):6483–6492

  31. 31.

    RTS,S Clinical Trials Partnership (2014) Efficacy and safety of the RTS,S/AS01 malaria vaccine during 18 months after vaccination: a phase 3 randomized, controlled trial in children and young infants at 11 African sites. PLoS Med 11(7):e1001685

  32. 32.

    RTS,S Clinical Trials Partnership (2015) Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386(9988):31–45

  33. 33.

    Müller O, Tozan Y, Becher H (2015) RTS,S/AS01 malaria vaccine and child mortality. Lancet 386(10005):1736

  34. 34.

    Aaby P, Rodrigues A, Kofoed P‑E, Benn CS (2015) RTS,S/AS01 malaria vaccine and child mortality. Lancet 386(10005):1735–1736

  35. 35.

    Klein SL, Shann F, Moss WJ, Benn CS, Aaby P (2016) RTS,S Malaria Vaccine and Increased Mortality in Girls. mBio 7(2):e514–e516

  36. 36.

    European Medicines Agency (2018) Mosquirix H‑W-2300. https://www.ema.europa.eu/en/mosquirix-h-w-2300. Zugegriffen: 1. Nov. 2019

  37. 37.

    Mesa (2019) Large-scale implementation of the RTS,S malaria vaccine: phase IV trial. https://mesamalaria.org/mesa-track/large-scale-implementation-rtss-malaria-vaccine-phase-iv-trial. Zugegriffen: 1. Nov. 2019

  38. 38.

    Butler D (2019) Promising malaria vaccine to be tested in first large field trial. Nature. http://www.nature.com/articles/d41586-019-01232-4. Zugegriffen: 1. Nov. 2019

  39. 39.

    Purcell LA, Wong KA, Yanow SK, Lee M, Spithill TW, Rodriguez A (2008) Chemically attenuated Plasmodium sporozoites induce specific immune responses, sterile immunity and cross-protection against heterologous challenge. Vaccine 26(38):4880–4884

  40. 40.

    Mueller A‑K, Labaied M, Kappe SHI, Matuschewski K (2005) Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature 433(7022):164–167

  41. 41.

    Spring M, Murphy J, Nielsen R et al (2013) First-in-human evaluation of genetically attenuated Plasmodium falciparum sporozoites administered by bite of Anopheles mosquitoes to adult volunteers. Vaccine 31(43):4975–4983

  42. 42.

    Mikolajczak SA, Lakshmanan V, Fishbaugher M et al (2014) A next-generation genetically attenuated plasmodium falciparum parasite created by triple gene deletion. Mol Ther 22(9):1707–1715

  43. 43.

    Kublin JG, Mikolajczak SA, Sack BK et al (2017) Complete attenuation of genetically engineered Plasmodium falciparum sporozoites in human subjects. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aad9099

  44. 44.

    Goh YS, McGuire D, Rénia L (2019) Vaccination With Sporozoites: Models and Correlates of Protection. Front Immunol 10:1227

  45. 45.

    Ishizuka AS, Lyke KE, DeZure A et al (2016) Protection against malaria at 1 year and immune correlates following PfSPZ vaccination. Nat Med 22(6):614–623

  46. 46.

    Rénia L, Grüner AC, Mauduit M, Snounou G (2013) Vaccination using normal live sporozoites under drug treatment. Methods Mol Biol 923:567–576

  47. 47.

    Roestenberg M, McCall M, Hopman J et al (2009) Protection against a malaria challenge by sporozoite inoculation. N Engl J Med 361(5):468–477

  48. 48.

    Roestenberg M, Teirlinck AC, McCall MBB et al (2011) Long-term protection against malaria after experimental sporozoite inoculation: an open-label follow-up study. Lancet 377(9779):1770–1776

  49. 49.

    Bijker EM, Bastiaens GJH, Teirlinck AC (2013) Protection against malaria after immunization by chloroquine prophylaxis and sporozoites is mediated by preerythrocytic immunity. Proc Natl Acad Sci USA 110(19):7862–7867

  50. 50.

    Epstein JE, Tewari K, Lyke KE et al (2011) Live attenuated malaria vaccine designed to protect through hepatic CD8+ T cell immunity. Science 334(6055):475–480

  51. 51.

    Epstein JE, Paolino KM, Richie TL et al (2017) Protection against Plasmodium falciparum malaria by PfSPZ Vaccine. JCI Insight 2(1):e89154

  52. 52.

    Lyke KE, Ishizuka AS, Berry AA et al (2017) Attenuated PfSPZ Vaccine induces strain-transcending T cells and durable protection against heterologous controlled human malaria infection. Proc Natl Acad Sci USA 114(10):2711–2716

  53. 53.

    Sissoko MS, Healy SA, Katile A (2017) Safety and efficacy of PfSPZ Vaccine against Plasmodium falciparum via direct venous inoculation in healthy malaria-exposed adults in Mali: a randomised, double-blind phase 1 trial. Lancet Infect Dis 17(5):498–509

  54. 54.

    Olotu A, Urbano V, Hamad A et al (2018) Advancing global health through development and clinical trials partnerships: a randomized, placebo-controlled, double-blind assessment of safety, Tolerability, and Immunogenicity of pfSPZ vaccine for malaria in healthy Equatoguinean men. Am J Trop Med Hyg 98(1):308–318

  55. 55.

    Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS (2016) Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev 40(3):343–372

  56. 56.

    Genton B, Betuela I, Felger I et al (2002) A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1‑2b trial in Papua New Guinea. J INFECT DIS 185(6):820–827

  57. 57.

    Ogutu BR, Apollo OJ, McKinney D et al (2009) Blood stage malaria vaccine eliciting high antigen-specific antibody concentrations confers no protection to young children in Western Kenya. PLoS ONE 4(3):e4708

  58. 58.

    Sirima SB, Mordmüller B, Milligan P et al (2016) A phase 2b randomized, controlled trial of the efficacy of the GMZ2 malaria vaccine in African children. Vaccine 34(38):4536–4542

  59. 59.

    Dejon-Agobe JC, Ateba-Ngoa U, Lalremruata A et al (2018) Controlled human malaria infection of healthy lifelong malaria-exposed adults to assess safety, immunogenicity and efficacy of the asexual blood stage malaria vaccine candidate GMZ2. Clin Infect Dis. https://doi.org/10.1093/cid/ciy1087

  60. 60.

    Theisen M, Adu B, Mordmüller B, Singh S (2017) The GMZ2 malaria vaccine: from concept to efficacy in humans. Expert Rev Vaccines 16(9):907–917

  61. 61.

    Jäschke A, Coulibaly B, Remarque EJ, Bujard H, Epp C (2017) Merozoite surface protein 1 from plasmodium falciparum is a major target of opsonizing antibodies in individuals with acquired immunity against malaria. Clin Vaccine Immunol. https://doi.org/10.1128/CVI.00155-17

  62. 62.

    Payne RO, Silk SE, Elias SC et al (2019) Human vaccination against RH5 induces neutralizing antimalarial antibodies that inhibit RH5 invasion complex interactions. JCI Insight. https://doi.org/10.1172/jci.insight.96381

  63. 63.

    Tougan T, Edula JR, Takashima E et al (2018) Molecular camouflage of plasmodium falciparum merozoites by binding of host vitronectin to P47 fragment of SERA5. Sci Rep. https://doi.org/10.1038/s41598-018-23194-9

  64. 64.

    Pombo DJ, Lawrence G, Hirunpetcharat C et al (2002) Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum. Lancet 360(9333):610–617

  65. 65.

    Stanisic DI, Fink J, Mayer J et al (2018) Vaccination with chemically attenuated Plasmodium falciparum asexual blood-stage parasites induces parasite-specific cellular immune responses in malaria-naïve volunteers: a pilot study. BMC Med 16(1):184

  66. 66.

    Boes A, Spiegel H, Voepel N et al (2015) Analysis of a multi-component multi-stage malaria vaccine candidate—tackling the cocktail challenge. PLoS ONE 10(7):e131456

  67. 67.

    Multi-Stage Malaria Vaccine Consortium: field efficacy testing of a malaria vaccine targeting all four stages of the parasite’s life-cycle—ERA-LEARN. https://www.era-learn.eu/network-information/networks/edctp-ii/vaccines-for-poverty-related-diseases-prds/multi-stage-malaria-vaccine-consortium-field-efficacy-testing-of-a-malaria-vaccine-targeting-all-four-stages-of-the-parasites-life-cycle. Zugegriffen: 12. August 2019

  68. 68.

    Pehrson C, Salanti A, Theander TG, Nielsen MA (2017) Pre-clinical and clinical development of the first placental malaria vaccine. Expert Rev Vaccines 16(6):613–624

  69. 69.

    Fried M, Duffy PE (2017) Malaria during pregnancy. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a025551

  70. 70.

    Fried M, Duffy PE (2015) Designing a VAR2CSA-based vaccine to prevent placental malaria. Vaccine 33(52):7483–7488

  71. 71.

    Gbédandé K, Fievet N, Viwami F et al (2017) Clinical development of a VAR2CSA-based placental malaria vaccine PAMVAC: quantifying vaccine antigen-specific memory B & T cell activity in Beninese primigravidae. Vaccine 35(27):3474–3481

  72. 72.

    Mordmüller B, Sulyok M, Egger-Adam D et al (2019) First-in-human, randomized, double-blind clinical trial of differentially adjuvanted PAMVAC, a vaccine candidate to prevent pregnancy-associated malaria. Clin Infect Dis. https://doi.org/10.1093/cid/ciy1140

  73. 73.

    Richie TL, Charoenvit Y, Wang R et al (2012) Clinical trial in healthy malaria-naïve adults to evaluate the safety, tolerability, immunogenicity and efficacy of MuStDO5, a five-gene, sporozoite/hepatic stage Plasmodium falciparum DNA vaccine combined with escalating dose human GM-CSF DNA. Hum Vaccin Immunother 8(11):1564–1584

  74. 74.

    O’Meara WP, Noor A, Gatakaa H, Tsofa B, McKenzie FE, Marsh K (2009) The impact of primary health care on malaria morbidity—defining access by disease burden. Trop Med Int Health 14(1):29–35

  75. 75.

    Bundesregierung In die Zukunft investieren: Malaria besiegen. https://www.bundesregierung.de/breg-de/aktuelles/in-die-zukunft-investieren-malaria-besiegen-438820. Zugegriffen: 5. Aug. 2019

  76. 76.

    Gröhe H Gemeinsame Verantwortung der G20-Partnerländer für die globale Gesundheit“. Bundesgesundheitsministerium. https://www.bundesgesundheitsministerium.de/presse/pressemitteilungen/2016/4-quartal/g20-praesidentschaft.html. Zugegriffen: 6. Aug. 2019

  77. 77.

    Bundesregierung (2013) Globale Gesundheitspolitik gestalten, gemeinsam handeln, Verantwortung wahrnehmen: Konzept der Bundesregierung. Publikationsversand der Bundesregierung, Rostock

  78. 78.

    Kickbusch I, Franz C, Holzscheiter A et al (2017) Germany’s expanding role in global health. Lancet 390(10097):898–912

  79. 79.

    BMZ (2019) Marshallplan mit Afrika. http://www.bmz.de/de/laender_regionen/marshallplan_mit_afrika/index.html. Zugegriffen: 6. Aug. 2019

  80. 80.

    IAB (2019) Erklärung des Internationalen Beratergremiums zu globaler Gesundheit

  81. 81.

    Global Fund (2019) Global fund overview. https://www.theglobalfund.org/en/overview/. Zugegriffen: 7. Aug. 2019

  82. 82.

    BMZ (2019) Globaler Fonds zur Bekämpfung von Aids, Tuberkulose und Malaria. http://www.bmz.de/de/ministerium/wege/multilaterale_ez/akteure/wio/gfatm/index.html. Zugegriffen: 7. Aug. 2019

  83. 83.

    BMZ (2018) Entwicklungsminister Müller sagt neue Unterstützung im Kampf gegen Aids zu. http://www.bmz.de/de/presse/aktuelleMeldungen/2018/november/181130_Entwicklungsminister-Mueller-sagt-neue-Unterstuetzung-im-Kampf-gegen-AIDS-zu/index.html. Zugegriffen: 7. Aug. 2019

  84. 84.

    Deutscher Bundestag (2017) Bericht des Ausschusses für Bildung, Forschung und Technikfolgenabschätzung (18. Ausschuss) gemäß § 56a der Geschäftsordnung Technikfolgenabschätzung (TA) Neue Arzneimittel gegen vernachlässigte Krankheiten Endbericht zum TA-Projekt „Medikamente für Afrika“.http://dip21.bundestag.de/dip21/btd/18/123/1812306.pdf. Zugegriffen: 7. August 2019

  85. 85.

    WHO (2018) Malaria vaccine: WHO position paper, January 2016—Recommendations. Vaccine 36(25):3576–3577

  86. 86.

    Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID, WHO (1988) Smallpox and its eradication. World Health Organization. https://apps.who.int/iris/handle/10665/39485. Zugegriffen: 22. Juni 2019

  87. 87.

    Baxby D (1999) The end of smallpox. Hist Today 49(3):14–16

  88. 88.

    Henderson DA (2009) Smallpox: the death of a disease. The inside story of eradicating a world wide killer, 1. Aufl. Prometheus Books, Amherst, New York

  89. 89.

    Metzger WG, Köhler C, Mordmüller B (2015) Lessons from a modern review of the smallpox eradication files. J R Soc Med 108(12):473–477

  90. 90.

    Aaby P, Ravn H, Fisker AB, Rodrigues A, Benn CS (2016) Is diphtheria-tetanus-pertussis (DTP) associated with increased female mortality? A meta-analysis testing the hypotheses of sex-differential non-specific effects of DTP vaccine. Trans R Soc Trop Med Hyg 110(10):570–581

  91. 91.

    Aaby P, Nielsen J, Benn CS, Trape J‑F (2016) Sex-differential effects on mortality of BCG and diphtheria-tetanus-pertussis vaccines in a rural area with high vaccination coverage: observational study from Senegal. Trans R Soc Trop Med Hyg 110(9):527–533

  92. 92.

    Olotu A, Fegan G, Wambua J (2016) Seven-year efficacy of RTS,S/AS01 malaria vaccine among young African children. N Engl J Med 374(26):2519–2529

  93. 93.

    Haywood M, Conway DJ, Weiss H et al (1999) Reduction in the mean number of plasmodium falciparum genotypes in Gambian children immunized with the malaria vaccine SPf66. Trans R Soc Trop Med Hyg 93(Suppl 1):65–68

  94. 94.

    Ratto-Kim S, Yoon I‑K, Paris RM, Excler J‑L, Kim JH, O’Connell RJ (2018) The US military commitment to vaccine development: a century of successes and challenges. Front Immunol 9:1397

  95. 95.

    EDCTP (2019) Malaria portfolio: large investments in treatment and vaccines. EDCTP. http://www.edctp.org/news/edctp-malaria-portfolio-large-investments-in-treatment-and-vaccine/. Zugegriffen: 12. Aug. 2019

  96. 96.

    CureVac (2019) CureVac entwickelt innovative mRNA-Impfstoffe gegen Influenza und Malaria. https://www.curevac.com/de/newsroom/news/curevac-entwickelt-innovative-mrna-impfstoffe-gegen-influenza-und-malaria/. Zugegriffen: 12. Aug. 2019

  97. 97.

    Maxmen A (2019) First proven malaria vaccine rolled out in Africa—but doubts linger. Nature 569:14–15

Download references

Danksagung

Wir danken unserer Skriptora Ingrid Heesen für das Korrekturlesen des Manuskriptes.

Author information

Correspondence to Wolfram Gottfried Metzger.

Ethics declarations

Interessenkonflikt

W. Metzger, Z. Sulyok, A. Theurer und C. Köhler geben an, dass kein Interessenkonflikt besteht.

Bei der Abfassung dieser Arbeit wurden alle ethischen Richtlinien eingehalten.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Metzger, W.G., Sulyok, Z., Theurer, A. et al. Entwicklung von Impfstoffen gegen Malaria – aktueller Stand. Bundesgesundheitsbl 63, 45–55 (2020). https://doi.org/10.1007/s00103-019-03070-1

Download citation

Schlüsselwörter

  • Malariaimpfstoff
  • Malariakontrolle
  • Wirksamkeit der Impfung
  • Präerythrozytäre Impfstoffe
  • RTS,S

Keywords

  • Malaria vaccine
  • Malaria control
  • Vaccine efficacy
  • Pre-erythrocytic vaccine
  • RTS,S