Advertisement

Hygienemaßnahmen bei Clostridioides difficile-Infektion (CDI)

Empfehlung der Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) beim Robert Koch-Institut
Bekanntmachungen – Amtliche Mitteilungen
  • 179 Downloads

Literatur

  1. 1.
    Leffler DA, Lamont JT (2015) Clostridium difficile infection. N Engl J Med 372(16):1539–1548Google Scholar
  2. 2.
    Khanna S, Gupta A, Baddour LM, Pardi DS (2016) Epidemiology, outcomes, and predictors of mortality in hospitalized adults with Clostridium difficile infection. Intern Emerg Med 11(5):657–665Google Scholar
  3. 3.
    Gerding DN, Lessa FC (2015) The epidemiology of Clostridium difficile infection inside and outside health care institutions. Infect Dis Clin North Am 29(1):37–50Google Scholar
  4. 4.
    Magill SS, Edwards JR, Bamberg W et al (2014) Multistate point-prevalence survey of health care-associated infections. N Engl J Med 370(13):1198–1208Google Scholar
  5. 5.
    Nationales Referenzzentrum für Surveillance von nosokomialen Infektionen (NRZ) (2017) Deutsche nationale Punkt-Prävalenzerhebung zu nosokomialen Infektionen und Antibiotika-Anwendung 2016. Abschlussbericht. http://www.nrz-hygiene.de/fileadmin/nrz/download/pps2016/PPS_2016_Abschlussbericht_20.07.2017.pdf . Zugegriffen: 21. Febr. 2019 Google Scholar
  6. 6.
    Robert Koch-Institut (RKI) (2017) Infektionsepidemiologisches Jahrbuch meldepflichtiger Krankheiten für 2016. Robert Koch-Institut: Berlin. http://edoc.rki.de/docviews/abstract.php?id=5220 . Zugegriffen: 21. Febr. 2019 Google Scholar
  7. 7.
    He M, Miyajima F, Roberts P et al (2013) Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet 45(1):109–113Google Scholar
  8. 8.
    Martin J (2015) The contribution of strains and hosts to outcomes in Clostridium difficile infection. Infect Dis Clin North Am 29(1):51–61Google Scholar
  9. 9.
    Chitnis AS, Holzbauer SM, Belflower RM et al (2013) Epidemiology of community-associated Clostridium difficile infection, 2009 through 2011. Jama Intern Med 173(14):1359–1367Google Scholar
  10. 10.
    Bauer MP, Kuijper EJ (2015) Potential sources of Clostridium difficile in human infection. Infect Dis Clin North Am 29(1):29–35Google Scholar
  11. 11.
    Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2002) Ausbruchsmanagement und struktuiertes Vorgehen bei gehäuftem Auftreten nosokomialer Infektionen. Bundesgesundheitsbl 45(2):180–186Google Scholar
  12. 12.
    Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2016) Händehygiene in Einrichtungen des Gesundheitswesens. Bundesgesundheitsbl 59(9):1189–1220Google Scholar
  13. 13.
    Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2004) Empfehlung zu den Anforderungen an die Hygiene bei der Reinigung und Desinfektion von Flächen. Bundesgesundheitsbl 47(1):51–61Google Scholar
  14. 14.
    Kommision für Krankenhaushygiene und Infektionsprävention (KRINKO) (2015) Infektionsprävention im Rahmen der Pflege und Behandlung von Patienten mit übertragbaren Krankheiten. Bundesgesundheitsbl 58(10):1151–1170Google Scholar
  15. 15.
    Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2010) Die Kategorien der Richtlinie für Krankenhaushygiene und Infektionsprävention – Aktualisierung der Definitionen. Bundesgesundheitsbl 53(7):754–756Google Scholar
  16. 16.
    Rupnik M, Wilcox MH, Gerding DN (2009) Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 7(7):526–536Google Scholar
  17. 17.
    Lübbert C, John E, von Müller L (2014) Clostridium-difficile-Infektion. Leitliniengerechte Diagnostik- und Behandlungsoptionen. Dtsch Arztebl 111(43):723–e713Google Scholar
  18. 18.
    Martin JS, Monaghan TM, Wilcox MH (2016) Clostridium difficile infection: epidemiology, diagnosis and understanding transmission. Nat Rev Gastroenterol Hepatol 13(4):206–216Google Scholar
  19. 19.
    Monaghan TM (2015) New perspectives in Clostridium difficile disease pathogenesis. Infect Dis Clin North Am 29(1):1–11Google Scholar
  20. 20.
    Smits WK, Lyras D, Lacy DB, Wilcox MH, Kuijper EJ (2016) Clostridium difficile infection. Nat Rev Dis Primers 2:16020Google Scholar
  21. 21.
    Sorg JA, Sonenshein AL (2008) Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol 190(7):2505–2512Google Scholar
  22. 22.
    Wilson KH (1983) Efficiency of various bile salt preparations for stimulation of Clostridium difficile spore germination. J Clin Microbiol 18(4):1017–1019Google Scholar
  23. 23.
    Britton RA, Young VB (2012) Interaction between the intestinal microbiota and host in Clostridium difficile colonization resistance. Trends Microbiol 20(7):313–319Google Scholar
  24. 24.
    McDonald LC, Killgore GE, Thompson A et al (2005) An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med 353(23):2433–2441Google Scholar
  25. 25.
    von Müller L, Halfmann A, Herrmann M (2012) Aktuelle Daten und Trends zur Antibiotikaresistenzentwicklung von Clostridium difficile. Bundesgesundheitsbl 55(11–12):1410–1417Google Scholar
  26. 26.
    Loo VG, Poirier L, Miller MA et al (2005) A predominantly clonal multi-institutional outbreak of Clostridium difficile-associated diarrhea with high morbidity and mortality. N Engl J Med 353(23):2442–2449Google Scholar
  27. 27.
    Aldeyab MA, Devine MJ, Flanagan P et al (2011) Multihospital outbreak of Clostridium difficile ribotype 027 infection: epidemiology and analysis of control measures. Infect Control Hosp Epidemiol 32(3):210–219Google Scholar
  28. 28.
    Alam MJ, Anu A, Walk ST, Garey KW (2014) Investigation of potentially pathogenic Clostridium difficile contamination in household environs. Anaerobe 27:31–33Google Scholar
  29. 29.
    Rodriguez-Palacios A, Stampfli HR, Duffield T et al (2006) Clostridium difficile PCR ribotypes in calves. Canada Emerg Infect Dis 12(11):1730–1736Google Scholar
  30. 30.
    Keel K, Brazier JS, Post KW, Weese S, Songer JG (2007) Prevalence of PCR ribotypes among Clostridium difficile isolates from pigs, calves, and other species. J Clin Microbiol 45(6):1963–1964Google Scholar
  31. 31.
    Hensgens MPM, Keessen EC, Squire MM et al (2012) Clostridium difficile infection in the community: a zoonotic disease? Clin Microbiol Infect 18(7):635–645Google Scholar
  32. 32.
    Dahms C, Hübner NO, Wilke F, Kramer A (2014) Mini-review: Epidemiology and zoonotic potential of multiresistant bacteria and Clostridium difficile in livestock and food. Gms Hyg Infect Control 9(3):Doc21Google Scholar
  33. 33.
    Keessen EC, Harmanus C, Dohmen W, Kuijper EJ, Lipman LJ (2013) Clostridium difficile infection associated with pig farms. Emerg Infect Dis 19(6):1032–1034Google Scholar
  34. 34.
    Al-Jumaili IJ, Shibley M, Lishman AH, Record CO (1984) Incidence and origin of Clostridium difficile in neonates. J Clin Microbiol 19(1):77–78Google Scholar
  35. 35.
    Bolton RP, Tait SK, Dear PR, Losowsky MS (1984) Asymptomatic neonatal colonisation by Clostridium difficile. Arch Dis Child 59(5):466–472Google Scholar
  36. 36.
    Ozaki E, Kato H, Kita H et al (2004) Clostridium difficile colonization in healthy adults: transient colonization and correlation with enterococcal colonization. J Med Microbiol 53(Pt 2):167–172Google Scholar
  37. 37.
    Arvand M, Moser V, Schwehn C, Bettge-Weller G, Hensgens MP, Kuijper EJ (2012) High prevalence of Clostridium difficile colonization among nursing home residents in Hesse, Germany. PLoS ONE 7(1):e30183Google Scholar
  38. 38.
    Yakob L, Riley TV, Paterson DL, Clements AC (2013) Clostridium difficile exposure as an insidious source of infection in healthcare settings: an epidemiological model. Bmc Infect Dis 13:376Google Scholar
  39. 39.
    Marwick CA, Yu N, Lockhart MC et al (2013) Community-associated Clostridium difficile infection among older people in Tayside, Scotland, is associated with antibiotic exposure and care home residence: cohort study with nested case-control. J Antimicrob Chemother 68(12):2927–2933Google Scholar
  40. 40.
    Ziakas PD, Zacharioudakis IM, Zervou FN, Grigoras C, Pliakos EE, Mylonakis E (2015) Asymptomatic carriers of toxigenic C. difficile in long-term care facilities: A meta-analysis of prevalence and risk factors. PLoS ONE 10(2):e117195Google Scholar
  41. 41.
    Donskey CJ, Kundrapu S, Deshpande A (2015) Colonization versus carriage of Clostridium difficile. Infect Dis Clin North Am 29(1):13–28Google Scholar
  42. 42.
    Lee YJ, Arguello ES, Jenq RR et al (2017) Protective Factors in the Intestinal Microbiome Against Clostridium difficile Infection in Recipients of Allogeneic Hematopoietic Stem Cell Transplantation. J Infect Dis 215(7):1117–1123Google Scholar
  43. 43.
    Sun X, Hirota SA (2015) The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection. Mol Immunol 63(2):193–202Google Scholar
  44. 44.
    Ghose C, Kelly CP (2015) The prospect for vaccines to prevent Clostridium difficile infection. Infect Dis Clin North Am 29(1):145–162Google Scholar
  45. 45.
    Nationales Referenzzentrum für Surveillance von nosokomialen Infektionen (NRZ) (2017) KISS Krankenhaus-Infektions-Surveillance-System. Modul CDAD-KISS. Referenzdaten, 2017. http://www.nrz-hygiene.de/fileadmin/nrz/module/cdad/201701_201712_CDADRef.pdf . Zugegriffen: 21. Febr. 2019 Google Scholar
  46. 46.
    Cassini A, Plachouras D, Eckmanns T et al (2016) Burden of Six Healthcare-Associated Infections on European Population Health: Estimating Incidence-Based Disability-Adjusted Life Years through a Population Prevalence-Based Modelling Study. Plos Med 13(10):e1002150Google Scholar
  47. 47.
    Robert Koch-Institut (RKI), Weiß B (2014) Schwer verlaufende Clostridium-difficile-Infektionen: IfSGSurveillancedaten von 2013. Epid Bull 27:233–237Google Scholar
  48. 48.
    Wiegand PN, Nathwani D, Wilcox MH, Stephens J, Shelbaya A, Haider S (2012) Clinical and economic burden of Clostridium difficile infection in Europe: a systematic review of healthcare-facility-acquired infection. J Hosp Infect 81(1):1–14Google Scholar
  49. 49.
    Arvand M, Hauri AM, Zaiss NH, Witte W, Bettge-Weller G (2009) Clostridium difficile ribotypes 001, 017, and 027 are associated with lethal C. difficile infection in Hesse, Germany. Euro Surveill 14(45).  https://doi.org/10.25646/411 Google Scholar
  50. 50.
    Kelly CP, LaMont JT (2008) Clostridium difficile-more difficult than ever. N Engl J Med 359(18):1932–1940Google Scholar
  51. 51.
    Freeman J, Bauer MP, Baines SD et al (2010) The changing epidemiology of Clostridium difficile infections. Clin Microbiol Rev 23(3):529–549Google Scholar
  52. 52.
    Kwon JH, Olsen MA, Dubberke ER (2015) The morbidity, mortality, and costs associated with Clostridium difficile infection. Infect Dis Clin North Am 29(1):123–134Google Scholar
  53. 53.
    Lessa FC, Mu Y, Bamberg WM et al (2015) Burden of Clostridium difficile infection in the United States. N Engl J Med 372(9):825–834Google Scholar
  54. 54.
    Bauer MP, Notermans DW, van Benthem BH et al (2011) Clostridium difficile infection in Europe: a hospital-based survey. Lancet 377(9759):63–73Google Scholar
  55. 55.
    Kleinkauf N, Weiss B, Jansen A et al (2007) Confirmed cases and report of clusters of severe infections due to Clostridium difficile PCR ribotype 027 in Germany. Euro Surveill 12(46):3307Google Scholar
  56. 56.
    Arvand M, Vollandt D, Bettge-Weller G, Harmanus C, Kuijper EJ (2014) Increased incidence of Clostridium difficile PCR ribotype 027 in Hesse, Germany, 2011 to 2013. Euro Surveill 19(10):20732Google Scholar
  57. 57.
    von Müller L, Mock M, Halfmann A, Stahlmann J, Simon A, Herrmann M (2015) Epidemiology of Clostridium difficile in Germany based on a single center long-term surveillance and German-wide genotyping of recent isolates provided to the advisory laboratory for diagnostic reasons. Int J Med Microbiol 305(7):807–813Google Scholar
  58. 58.
    Arvand M, Bettge-Weller G (2016) Clostridium difficile ribotype 027 is not evenly distributed in Hesse, Germany. Anaerobe 40:1–4Google Scholar
  59. 59.
    Arvand M, Hauri AM, Zaiss NH, Witte W, Bettge-Weller G (2010) Schwer verlaufende Clostridium-difficile-Infektionen in Hessen 2008–2009. Dtsch Med Wochenschr 135(40):1963–1967Google Scholar
  60. 60.
    Berger FBM, Strauß C, von Müller L, Gärtner B (2017) Auftreten von Clostridium difficile Ribotyp 176 in Deutschland. Epid Bull 10:93–95Google Scholar
  61. 61.
    von Muller L, Mock M, Halfmann A, Stahlmann J, Simon A, Herrmann M (2015) Epidemiology of Clostridium difficile in Germany based on a single center long-term surveillance and German-wide genotyping of recent isolates provided to the advisory laboratory for diagnostic reasons. Int J Med Microbiol 305(7):807–813Google Scholar
  62. 62.
    Goorhuis A, van Dissel JT, Kuijper EJ (2008) Novel risk factors for Clostridium difficile-associated disease in a setting of endemicity? Clin Infect Dis 47(3):429–430Google Scholar
  63. 63.
    Keessen EC, Gaastra W, Lipman LJ (2011) Clostridium difficile infection in humans and animals, differences and similarities. Vet Microbiol 153(3/4):205–217Google Scholar
  64. 64.
    Dormann A, Weinke T (2015) Clostridium-difficile-Infektionen ein zunehmendes Problem in deutschen Krankenhäusern. Klinikarzt 39(1):2–10Google Scholar
  65. 65.
    Kelly CP, LaMont JT (2016) Antibiotic-associated diarrhoea and Clostridium difficile Infection. In: Feldman M, Friedman L, Bradt LJ (Hrsg) Sleisenger & Fordtran’s. Gastrointestinal and Liver Disease—Pathophysiology, Diagnosis, Management, 10. Aufl. Elsevier Saunders, Philadelphia, S 1939–1954Google Scholar
  66. 66.
    Tschudin-Sutter S, Carroll KC, Tamma PD et al (2015) Impact of toxigenic Clostridium difficile colonization on the risk of subsequent C. difficile infection in intensive care unit patients. Infect Control Hosp Epidemiol 36(11):1324–1329Google Scholar
  67. 67.
    Clabots CR, Johnson S, Olson MM, Peterson LR, Gerding DN (1992) Acquisition of Clostridium difficile by hospitalized patients: evidence for colonized new admissions as a source of infection. J Infect Dis 166(3):561–567Google Scholar
  68. 68.
    Bruminhent J, Wang ZX, Hu C et al (2014) Clostridium difficile colonization and disease in patients undergoing hematopoietic stem cell transplantation. Biol Blood Marrow Transpl 20(9):1329–1334Google Scholar
  69. 69.
    Nissle K, Kopf D, Rosler A (2016) Asymptomatic and yet C. difficile-toxin positive? Prevalence and risk factors of carriers of toxigenic Clostridium difficile among geriatric in-patients. Bmc Geriatr 16(1):185Google Scholar
  70. 70.
    Wieczorkiewicz JT, Lopansri BK, Cheknis A et al (2015) Fluoroquinolone and macrolide exposure predict Clostridium difficile infection with the highly fluoroquinolone- and macrolide-resistant epidemic C. difficile Strain BI/NAP1/027. Antimicrob Agents Chemother 60(1):418–423Google Scholar
  71. 71.
    Hensgens MPM, Goorhuis A, Dekkers OM, Kuijper EJ (2012) Time interval of increased risk for Clostridium difficile infection after exposure to antibiotics. J Antimicrob Chemother 67(3):742–748 Google Scholar
  72. 72.
    Stevens V, Dumyati G, Fine LS, Fisher SG, van Wijngaarden E (2011) Cumulative antibiotic exposures over time and the risk of Clostridium difficile infection. Clin Infect Dis 53(1):42–48Google Scholar
  73. 73.
    Shin JH, High KP, Warren CA (2016) Older Is Not Wiser, Immunologically Speaking: Effect of Aging on Host Response to Clostridium difficile Infections. J Gerontol A Biol Sci Med Sci 71(7):916–922Google Scholar
  74. 74.
    Vesteinsdottir I, Gudlaugsdottir S, Einarsdottir R, Kalaitzakis E, Sigurdardottir O, Bjornsson ES (2012) Risk factors for Clostridium difficile toxin-positive diarrhea: a population-based prospective case-control study. Eur J Clin Microbiol Infect Dis 31(10):2601–2610Google Scholar
  75. 75.
    Murphy CR, Avery TR, Dubberke ER, Huang SS (2012) Frequent hospital readmissions for Clostridium difficile infection and the impact on estimates of hospital-associated C. difficile burden. Infect Control Hosp Epidemiol 33(1):20–28 Google Scholar
  76. 76.
    Furuya-Kanamori L, Stone JC, Clark J et al (2015) Comorbidities, exposure to medications, and the risk of community-acquired Clostridium difficile infection: a systematic review and meta-analysis. Infect Control Hosp Epidemiol 36(2):132–141Google Scholar
  77. 77.
    Paudel S, Zacharioudakis IM, Zervou FN, Ziakas PD, Mylonakis E (2015) Prevalence of Clostridium difficile infection among solid organ transplant recipients: a meta-analysis of published studies. PLoS ONE 10(4):e124483Google Scholar
  78. 78.
    Lübbert C, Johann C, Kekule AS et al (2013) Immunsuppressive Behandlung als Risikofaktor für das Auftreten einer Clostridium-difficile-Infektion (CDI). Z Gastroenterol 51(11):1251–1258Google Scholar
  79. 79.
    Ricciardi R, Ogilvie JW Jr., Roberts PL, Marcello PW, Concannon TW, Baxter NN (2009) Epidemiology of Clostridium difficile colitis in hospitalized patients with inflammatory bowel diseases. Dis Colon Rectum 52(1):40–45Google Scholar
  80. 80.
    Kim SC, Seo MY, Lee JY et al (2016) Advanced chronic kidney disease: a strong risk factor for Clostridium difficile infection. Korean J Intern Med 31(1):125–133Google Scholar
  81. 81.
    Simor AE, Bradley SF, Strausbaugh LJ, Crossley K, Nicolle LE (2002) Clostridium difficile in long-term-care facilities for the elderly. Infect Control Hosp Epidemiol 23(11):696–703Google Scholar
  82. 82.
    Aseeri M, Schroeder T, Kramer J, Zackula R (2008) Gastric acid suppression by proton pump inhibitors as a risk factor for Clostridium difficile-associated diarrhea in hospitalized patients. Am J Gastroenterol 103(9):2308–2313Google Scholar
  83. 83.
    Arriola V, Tischendorf J, Musuuza J, Barker A, Rozelle JW, Safdar N (2016) Assessing the Risk of Hospital-Acquired Clostridium Difficile Infection With Proton Pump Inhibitor Use: A Meta-Analysis. Infect Control Hosp Epidemiol 37(12):1408–1417Google Scholar
  84. 84.
    Cao F, Chen CX, Wang M et al (2018) Updated meta-analysis of controlled observational studies: proton-pump inhibitors and risk of Clostridium difficile infection. J Hosp Infect 98(1):4–13Google Scholar
  85. 85.
    Oshima T, Wu L, Li M, Fukui H, Watari J, Miwa H (2018) Magnitude and direction of the association between Clostridium difficile infection and proton pump inhibitors in adults and pediatric patients: a systematic review and meta-analysis. J Gastroenterol 53(1):84–94Google Scholar
  86. 86.
    Tleyjeh IM, Bin Abdulhak AA, Riaz M et al (2012) Association between proton pump inhibitor therapy and clostridium difficile infection: a contemporary systematic review and meta-analysis. PLoS ONE 7(12):e50836Google Scholar
  87. 87.
    Trifan A, Stanciu C, Girleanu I et al (2017) Proton pump inhibitors therapy and risk of Clostridium difficile infection: Systematic review and meta-analysis. World J Gastroenterol 23(35):6500–6515Google Scholar
  88. 88.
    Freedberg DE, Lamouse-Smith ES, Lightdale JR, Jin Z, Yang YX, Abrams JA (2015) Use of Acid Suppression Medication is Associated With Risk for C. difficile Infection in Infants and Children: A Population-based Study. Clin Infect Dis 61(6):912–917Google Scholar
  89. 89.
    Tariq R, Singh S, Gupta A, Pardi DS, Khanna S (2017) Association of Gastric Acid Suppression With Recurrent Clostridium difficile Infection: A Systematic Review and Meta-analysis. Jama Intern Med 177(6):784–791Google Scholar
  90. 90.
    Fekety R, McFarland LV, Surawicz CM, Greenberg RN, Elmer GW, Mulligan ME (1997) Recurrent Clostridium difficile diarrhea: characteristics of and risk factors for patients enrolled in a prospective, randomized, double-blinded trial. Clin Infect Dis 24(3):324–333Google Scholar
  91. 91.
    Hu MY, Katchar K, Kyne L et al (2009) Prospective derivation and validation of a clinical prediction rule for recurrent Clostridium difficile infection. Baillieres Clin Gastroenterol 136(4):1206–1214Google Scholar
  92. 92.
    Eyre DW, Walker AS, Wyllie D et al (2012) Predictors of first recurrence of Clostridium difficile infection: implications for initial management. Clin Infect Dis 55(Suppl 2):S77–87Google Scholar
  93. 93.
    Petrella LA, Sambol SP, Cheknis A et al (2012) Decreased cure and increased recurrence rates for Clostridium difficile infection caused by the epidemic C. difficile BI strain. Clin Infect Dis 55(3):351–357Google Scholar
  94. 94.
    Marsh JW, Arora R, Schlackman JL, Shutt KA, Curry SR, Harrison LH (2012) Association of relapse of Clostridium difficile disease with BI/NAP1/027. J Clin Microbiol 50(12):4078–4082Google Scholar
  95. 95.
    Davies KA, Longshaw CM, Davis GL et al (2014) Underdiagnosis of Clostridium difficile across Europe: the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID). Lancet Infect Dis 14(12):1208–1219Google Scholar
  96. 96.
    Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF) (2015) S2k-Leitlinie. Gastrointestinale Infektionen und Morbus Whipple. AWMF-Registernummer 021/024. http://www.awmf.org/leitlinien/detail/ll/021-024.html . Zugegriffen: 21. Febr. 2019 Google Scholar
  97. 97.
    Barbut F, Surgers L, Eckert C et al (2014) Does a rapid diagnosis of Clostridium difficile infection impact on quality of patient management? Clin Microbiol Infect 20(2):136–144Google Scholar
  98. 98.
    Crobach MJ, Planche T, Eckert C et al (2016) European Society of Clinical Microbiology and Infectious Diseases: update of the diagnostic guidance document for Clostridium difficile infection. Clin Microbiol Infect 22(Suppl 4):S63–81Google Scholar
  99. 99.
    European Centre for Disease Prevention and Control (ECDC) (2018) Technical Report. Laboratory procedures for diagnosis and typing of human Clostridium difficile infection. ECDC: Stockholm. https://ecdc.europa.eu/sites/portal/files/documents/SOPs-Clostridium-difficile-diagnosis-and-typing.pdf . Zugegriffen: 21. Febr. 2019 Google Scholar
  100. 100.
    Tschudin-Sutter S, Kuijper EJ, Durovic A et al (2018) Guidance document for prevention of Clostridium difficile infection in acute healthcare settings. Clin Microbiol Infect 24(10):1051–1054Google Scholar
  101. 101.
    Planche T, Wilcox MH (2015) Diagnostic pitfalls in Clostridium difficile infection. Infect Dis Clin North Am 29(1):63–82Google Scholar
  102. 102.
    Kundrapu S, Sunkesula VC, Jury LA, Sethi AK, Donskey CJ (2012) Utility of perirectal swab specimens for diagnosis of Clostridium difficile infection. Clin Infect Dis 55(11):1527–1530Google Scholar
  103. 103.
    Rogers DS, Kundrapu S, Sunkesula VCK, Donskey CJ (2013) Comparison of perirectal versus rectal swabs for detection of asymptomatic carriers of toxigenic Clostridium difficile. J Clin Microbiol 51(10):3421–3422Google Scholar
  104. 104.
    Deshpande A, Pasupuleti V, Patel P et al (2011) Repeat stool testing to diagnose Clostridium difficile infection using enzyme immunoassay does not increase diagnostic yield. Clin Gastroenterol Hepatol 9(8):665–669.e1Google Scholar
  105. 105.
    Nistico JA, Hage JE, Schoch PE, Cunha BA (2013) Unnecessary repeat Clostridium difficile PCR testing in hospitalized adults with C. difficile-negative diarrhea. Eur J Clin Microbiol Infect Dis 32(1):97–99Google Scholar
  106. 106.
  107. 107.
    Berdichevski T, Keller N, Rahav G, Bar-Meir S, Eliakim R, Ben-Horin S (2013) The impact of pseudomembrane formation on the outcome of Clostridium difficile-associated disease. Infection 41(5):969–977Google Scholar
  108. 108.
    Jangi S, Lamont JT (2010) Asymptomatic colonization by Clostridium difficile in infants: implications for disease in later life. J Pediatr Gastroenterol Nutr 51(1):2–7Google Scholar
  109. 109.
    Weichert S, Simon A, von Müller L, Adam R, Schroten H (2015) Clostridium-difficile-assoziierte Infektionen im Kindes- und Jugendalter. Monatsschr Kinderheilkd 163(5):427Google Scholar
  110. 110.
    Borali E, De Giacomo C (2016) Clostridium Difficile Infection in Children: A Review. J Pediatr Gastroenterol Nutr 63(6):e130–e140Google Scholar
  111. 111.
    Enoch DA, Butler MJ, Pai S, Aliyu SH, Karas JA (2011) Clostridium difficile in children: colonisation and disease. J Infect 63(2):105–113Google Scholar
  112. 112.
    Nationales Referenzzentrum für Surveillance von nosokomialen Infektionen (NRZ) (2016) KISS Krankenhaus-Infektions-Surveillance-System. Modul CDAD-KISS. Referenzdaten, 2016. http://www.nrz-hygiene.de/surveillance/kiss/cdad-kiss/ . Zugegriffen: 21. Febr. 2019 Google Scholar
  113. 113.
    Barker AK, Ngam C, Musuuza JS, Vaughn VM, Safdar N (2017) Reducing Clostridium difficile in the Inpatient Setting: A Systematic Review of the Adherence to and Effectiveness of C. difficile Prevention Bundles. Infect Control Hosp Epidemiol 38(6):639–650Google Scholar
  114. 114.
    Yakob L, Riley TV, Paterson DL, Marquess J, Clements AC (2014) Assessing control bundles for Clostridium difficile: a review and mathematical model. Emerg Microbes Infect 3(6):e43Google Scholar
  115. 115.
    Khanafer N, Voirin N, Barbut F, Kuijper E, Vanhems P (2015) Hospital management of Clostridium difficile infection: a review of the literature. J Hosp Infect 90(2):91–101Google Scholar
  116. 116.
    Loo VG (2015) Environmental interventions to control Clostridium difficile. Infect Dis Clin North Am 29(1):83–91Google Scholar
  117. 117.
    Louh IK, Greendyke WG, Hermann EA et al (2017) Clostridium Difficile Infection in Acute Care Hospitals: Systematic Review and Best Practices for Prevention. Infect Control Hosp Epidemiol 38(4):476–482Google Scholar
  118. 118.
    Collins DA, Hawkey PM, Riley TV (2013) Epidemiology of Clostridium difficile infection in Asia. Antimicrob Resist Infect Control 2(1):21Google Scholar
  119. 119.
    Longtin Y, Paquet-Bolduc B, Gilca R et al (2016) Effect of detecting and isolating Clostridium difficile carriers at hospital admission on the incidence of C. difficile infections: A quasi-experimental controlled study. Jama Intern Med 176(6):796–804Google Scholar
  120. 120.
    Blixt T, Gradel KO, Homann C et al (2017) Asymptomatic Carriers Contribute to Nosocomial Clostridium difficile Infection: A Cohort Study of 4508 Patients. Baillieres Clin Gastroenterol 152(5):1031–1041Google Scholar
  121. 121.
    Curry SR, Muto CA, Schlackman JL et al (2013) Use of multilocus variable number of tandem repeats analysis genotyping to determine the role of asymptomatic carriers in Clostridium difficile transmission. Clin Infect Dis 57(8):1094–1102Google Scholar
  122. 122.
    Eyre DW, Griffiths D, Vaughan A et al (2013) Asymptomatic Clostridium difficile colonisation and onward transmission. PLoS ONE 8(11):e78445Google Scholar
  123. 123.
    Grigoras CA, Zervou FN, Zacharioudakis IM, Siettos CI, Mylonakis E (2016) Isolation of C. difficile Carriers Alone and as Part of a Bundle Approach for the Prevention of Clostridium difficile Infection (CDI): A Mathematical Model Based on Clinical Study Data. PLoS ONE 11(6):e156577Google Scholar
  124. 124.
    Kaatz GW, Gitlin SD, Schaberg DR et al (1988) Acquisition of Clostridium difficile from the hospital environment. Am J Epidemiol 127(6):1289–1294Google Scholar
  125. 125.
    Samore MH, Venkataraman L, DeGirolami PC, Arbeit RD, Karchmer AW (1996) Clinical and molecular epidemiology of sporadic and clustered cases of nosocomial Clostridium difficile diarrhea. Am J Med 100(1):32–40Google Scholar
  126. 126.
    Barbut F, Menuet D, Verachten M, Girou E (2009) Comparison of the efficacy of a hydrogen peroxide dry-mist disinfection system and sodium hypochlorite solution for eradication of Clostridium difficile spores. Infect Control Hosp Epidemiol 30(6):507–514Google Scholar
  127. 127.
    Hill KA, Collins J, Wilson L, Perry JD, Gould FK (2013) Comparison of two selective media for the recovery of Clostridium difficile from environmental surfaces. J Hosp Infect 83(2):164–166Google Scholar
  128. 128.
    Riggs MM, Sethi AK, Zabarsky TF, Eckstein EC, Jump RL, Donskey CJ (2007) Asymptomatic carriers are a potential source for transmission of epidemic and nonepidemic Clostridium difficile strains among long-term care facility residents. Clin Infect Dis 45(8):992–998Google Scholar
  129. 129.
    Chang VT, Nelson K (2000) The role of physical proximity in nosocomial diarrhea. Clin Infect Dis 31(3):717–722Google Scholar
  130. 130.
    Shaughnessy MK, Micielli RL, DePestel DD et al (2011) Evaluation of hospital room assignment and acquisition of Clostridium difficile infection. Infect Control Hosp Epidemiol 32(3):201–206Google Scholar
  131. 131.
    Freedberg DE, Salmasian H, Cohen B, Abrams JA, Larson EL (2016) Receipt of Antibiotics in Hospitalized Patients and Risk for Clostridium difficile Infection in Subsequent Patients Who Occupy the Same Bed. Jama Intern Med 176(12):1801–1808Google Scholar
  132. 132.
    Mitchell BG, Dancer SJ, Anderson M, Dehn E (2015) Risk of organism acquisition from prior room occupants: a systematic review and meta-analysis. J Hosp Infect 91(3):211–217Google Scholar
  133. 133.
    Widmer AF, Frei R, Erb S et al (2017) Transmissibility of Clostridium difficile Without Contact Isolation: Results From a Prospective Observational Study With 451 Patients. Clin Infect Dis 64(4):393–400Google Scholar
  134. 134.
    McFarland LV, Mulligan ME, Kwok RY, Stamm WE (1989) Nosocomial acquisition of Clostridium difficile infection. N Engl J Med 320(4):204–210Google Scholar
  135. 135.
    Forster AJ, Daneman N, van Walraven C (2017) Influence of antibiotics and case exposure on hospital-acquired Clostridium difficile infection independent of illness severity. J Hosp Infect 95(4):400–409Google Scholar
  136. 136.
    Teltsch DY, Hanley J, Loo V, Goldberg P, Gursahaney A, Buckeridge DL (2011) Infection acquisition following intensive care unit room privatization. Arch Intern Med 171(1):32–38Google Scholar
  137. 137.
    Abbett SK, Yokoe DS, Lipsitz SR et al (2009) Proposed checklist of hospital interventions to decrease the incidence of healthcare-associated Clostridium difficile infection. Infect Control Hosp Epidemiol 30(11):1062–1069Google Scholar
  138. 138.
    Figueroa I, Johnson S, Sambol SP, Goldstein EJ, Citron DM, Gerding DN (2012) Relapse versus reinfection: recurrent Clostridium difficile infection following treatment with fidaxomicin or vancomycin. Clin Infect Dis 55(Suppl 2):S104–S109Google Scholar
  139. 139.
    Aogain MM, Moloney G, Kilkenny S et al (2015) Whole-genome sequencing improves discrimination of relapse from reinfection and identifies transmission events among patients with recurrent Clostridium difficile infections. J Hosp Infect 90(2):108–116Google Scholar
  140. 140.
    Islam J, Cheek E, Navani V, Rajkumar C, Cohen J, Llewelyn MJ (2013) Influence of cohorting patients with Clostridium difficile infection on risk of symptomatic recurrence. J Hosp Infect 85(1):17–21Google Scholar
  141. 141.
    Al-Nassir WN, Sethi AK, Nerandzic MM, Bobulsky GS, Jump RL, Donskey CJ (2008) Comparison of clinical and microbiological response to treatment of Clostridium difficile-associated disease with metronidazole and vancomycin. Clin Infect Dis 47(1):56–62Google Scholar
  142. 142.
    Sethi AK, Al-Nassir WN, Nerandzic MM, Bobulsky GS, Donskey CJ (2010) Persistence of skin contamination and environmental shedding of Clostridium difficile during and after treatment of C. difficile infection. Infect Control Hosp Epidemiol 31(1):21–27Google Scholar
  143. 143.
    Banach DB, Bearman G, Barnden M et al (2018) Duration of Contact Precautions for Acute-Care Settings. Infect Control Hosp Epidemiol 39(2):127–144Google Scholar
  144. 144.
    Surawicz CM, Brandt LJ, Binion DG et al (2013) Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol 108(4):478–498Google Scholar
  145. 145.
    Dubberke ER, Carling P, Carrico R et al (2014) Strategies to prevent Clostridium difficile infections in acute care hospitals: 2014 Update. Infect Control Hosp Epidemiol 35(6):628–645Google Scholar
  146. 146.
    Martin M, Zingg W, Knoll E, Wilson C, Dettenkofer M, Group PS (2014) National European guidelines for the prevention of Clostridium difficile infection: a systematic qualitative review. J Hosp Infect 87(4):212–219Google Scholar
  147. 147.
    Fekety R, Kim KH, Brown D, Batts DH, Cudmore M, Silva J Jr. (1981) Epidemiology of antibiotic-associated colitis; isolation of Clostridium difficile from the hospital environment. Am J Med 70(4):906–908Google Scholar
  148. 148.
    Bobulsky GS, Al-Nassir WN, Riggs MM, Sethi AK, Donskey CJ (2008) Clostridium difficile skin contamination in patients with C. difficile-associated disease. Clin Infect Dis 46(3):447–450Google Scholar
  149. 149.
    DIN EN 14126:2004-01 Schutzkleidung—Leistungsanforderungen und Prüfverfahren für Schutzkleidung gegen Infektionserreger; Deutsche Fassung EN 14126:2003. Beuth: Berlin Google Scholar
  150. 150.
    Deutsche Gesellschaft für Krankenhaushygiene (DGKH) (2015) Schutzkittel bei medizinischen und pflegerischen Tätigkeiten sowie bei Barrieremaßnahmen und Isolierungen. Hyg Med 40(1):59–60Google Scholar
  151. 151.
    Kim KH, Fekety R, Batts DH et al (1981) Isolation of Clostridium difficile from the environment and contacts of patients with antibiotic-associated colitis. J Infect Dis 143(1):42–50Google Scholar
  152. 152.
    Roberts K, Smith CF, Snelling AM et al (2008) Aerial dissemination of Clostridium difficile spores. Bmc Infect Dis 8:7Google Scholar
  153. 153.
    Landelle C, Verachten M, Legrand P et al (2014) Contamination of healthcare workers’ hands with Clostridium difficile spores after caring for patients with C. difficile infection. Infect Control Hosp Epidemiol 35(1):10–15Google Scholar
  154. 154.
    Johnson S, Gerding DN, Olson MM et al (1990) Prospective, controlled study of vinyl glove use to interrupt Clostridium difficile nosocomial transmission. Am J Med 88(2):137–140Google Scholar
  155. 155.
    Oughton MT, Loo VG, Dendukuri N, Fenn S, Libman MD (2009) Hand hygiene with soap and water is superior to alcohol rub and antiseptic wipes for removal of Clostridium difficile. Infect Control Hosp Epidemiol 30(10):939–944Google Scholar
  156. 156.
    Jabbar U, Leischner J, Kasper D et al (2010) Effectiveness of alcohol-based hand rubs for removal of Clostridium difficile spores from hands. Infect Control Hosp Epidemiol 31(6):565–570Google Scholar
  157. 157.
    Gordin FM, Schultz ME, Huber RA, Gill JA (2005) Reduction in nosocomial transmission of drug-resistant bacteria after introduction of an alcohol-based handrub. Infect Control Hosp Epidemiol 26(7):650–653Google Scholar
  158. 158.
    Stone SP, Fuller C, Savage J et al (2012) Evaluation of the national Cleanyourhands campaign to reduce Staphylococcus aureus bacteraemia and Clostridium difficile infection in hospitals in England and Wales by improved hand hygiene: four year, prospective, ecological, interrupted time series study. BMJ 344:e3005Google Scholar
  159. 159.
    Boyce JM, Ligi C, Kohan C, Dumigan D, Havill NL (2006) Lack of association between the increased incidence of Clostridium difficile-associated disease and the increasing use of alcohol-based hand rubs. Infect Control Hosp Epidemiol 27(5):479–483Google Scholar
  160. 160.
    Bettin K, Clabots C, Mathie P, Willard K, Gerding DN (1994) Effectiveness of liquid soap vs. chlorhexidine gluconate for the removal of Clostridium difficile from bare hands and gloved hands. Infect Control Hosp Epidemiol 15(11):697–702Google Scholar
  161. 161.
    Nerandzic MM, Rackaityte E, Jury LA, Eckart K, Donskey CJ (2013) Novel strategies for enhanced removal of persistent Bacillus anthracis surrogates and Clostridium difficile spores from skin. PLoS ONE 8(7):e68706Google Scholar
  162. 162.
    Duerden BI (2011) Contribution of a government target to controlling Clostridium difficile in the NHS in England. Anaerobe 17(4):175–179Google Scholar
  163. 163.
    Noto MJ, Domenico HJ, Byrne DW et al (2015) Chlorhexidine bathing and health care-associated infections: a randomized clinical trial. JAMA 313(4):369–378Google Scholar
  164. 164.
    Dubberke ER, Reske KA, Noble-Wang J et al (2007) Prevalence of Clostridium difficile environmental contamination and strain variability in multiple health care facilities. Am J Infect Control 35(5):315–318Google Scholar
  165. 165.
    Sjoberg M, Eriksson M, Andersson J, Noren T (2014) Transmission of Clostridium difficile spores in isolation room environments and through hospital beds. APMIS 122(9):800–803Google Scholar
  166. 166.
    Weber DJ, Anderson DJ, Sexton DJ, Rutala WA (2013) Role of the environment in the transmission of Clostridium difficile in health care facilities. Am J Infect Control 41(5 Suppl):S105–S110Google Scholar
  167. 167.
    Mayfield JL, Leet T, Miller J, Mundy LM (2000) Environmental control to reduce transmission of Clostridium difficile. Clin Infect Dis 31(4):995–1000Google Scholar
  168. 168.
    Apisarnthanarak A, Zack JE, Mayfield JL et al (2004) Effectiveness of environmental and infection control programs to reduce transmission of Clostridium difficile. Clin Infect Dis 39(4):601–602Google Scholar
  169. 169.
    Bond WW, Ott JB, Franke KA, McCracken JE (1991) Effective use of liquid chemical germicides on medical devices: instrument design problems. In: Block SS (Hrsg) Disinfection, sterilization and preservation, 4. Aufl. Lea & Febiger, Philadelphia, S 1097–1106Google Scholar
  170. 170.
    Dawson LF, Valiente E, Donahue EH, Birchenough G, Wren BW (2011) Hypervirulent Clostridium difficile PCR-ribotypes exhibit resistance to widely used disinfectants. PLoS ONE 6(10):e25754Google Scholar
  171. 171.
    Russell AD (1999) Bacterial resistance to disinfectants: present knowledge and future problems. J Hosp Infect 43(Suppl):S57–S68Google Scholar
  172. 172.
    Russell AD (1990) Bacterial spores and chemical sporicidal agents. Clin Microbiol Rev 3(2):99–119Google Scholar
  173. 173.
    Desinfektionsmittel-Kommission im Verbund für Angewandte Hygiene (VAH) Anforderungen und Methoden zur VAH-Zertifizierung chemischer Desinfektionsverfahren. 3. Ergänzungslieferung. Stand: 15. Oktober 2018. mph-Verlag: Wiesbaden Google Scholar
  174. 174.
    DIN EN 17126:2017-06 (Entwurf) Chemische Desinfektionsmittel und Antiseptika – Quantitativer Suspensionsversuch zur Bestimmung der sporiziden Wirkung im humanmedizinischen Bereich – Prüfverfahren und Anforderungen (Phase 2, Stufe 1); Deutsche und Englische Fassung prEN 17126:2017. Beuth: Berlin Google Scholar
  175. 175.
    Verbund für Angewandte Hygiene (VAH) (2017) Empfehlung zur Auswahl sporizider Desinfektionsmittel bei Clostridium-difficile-Infektionen im human-medizinischen Bereich. Hyg Med 42(1/2):38Google Scholar
  176. 176.
    Wilcox MH, Fawley WN, Wigglesworth N, Parnell P, Verity P, Freeman J (2003) Comparison of the effect of detergent versus hypochlorite cleaning on environmental contamination and incidence of Clostridium difficile infection. J Hosp Infect 54(2):109–114Google Scholar
  177. 177.
    Eckstein BC, Adams DA, Eckstein EC et al (2007) Reduction of Clostridium Difficile and vancomycin-resistant Enterococcus contamination of environmental surfaces after an intervention to improve cleaning methods. Bmc Infect Dis 7:61Google Scholar
  178. 178.
    Kundrapu S, Sunkesula V, Jury LA, Sitzlar BM, Donskey CJ (2012) Daily disinfection of high-touch surfaces in isolation rooms to reduce contamination of healthcare workers’ hands. Infect Control Hosp Epidemiol 33(10):1039–1042Google Scholar
  179. 179.
    Sitzlar B, Deshpande A, Fertelli D, Kundrapu S, Sethi AK, Donskey CJ (2013) An environmental disinfection odyssey: evaluation of sequential interventions to improve disinfection of Clostridium difficile isolation rooms. Infect Control Hosp Epidemiol 34(5):459–465Google Scholar
  180. 180.
    Dumford DM, Nerandzic MM, Eckstein BC, Donskey CJ (2009) What is on that keyboard? Detecting hidden environmental reservoirs of Clostridium difficile during an outbreak associated with North American pulsed-field gel electrophoresis type 1 strains. Am J Infect Control 37(1):15–19Google Scholar
  181. 181.
    Canadian Agency for Drugs and Technologies in Health (CADTH) (2014) Non-Manual techniques for room disinfection in healthcare facilities: A review of clinical effectiveness and guidelines. (Rapid Response Report: Summary with Critical Appraisal). https://www.ncbi.nlm.nih.gov/pubmedhealth/n/rc0545/pdf . Zugegriffen: 21. Febr. 2019 Google Scholar
  182. 182.
    Manian FA, Griesnauer S, Bryant A (2013) Implementation of hospital-wide enhanced terminal cleaning of targeted patient rooms and its impact on endemic Clostridium difficile infection rates. Am J Infect Control 41(6):537–541Google Scholar
  183. 183.
    Boyce JM, Havill NL, Otter JA et al (2008) Impact of hydrogen peroxide vapor room decontamination on Clostridium difficile environmental contamination and transmission in a healthcare setting. Infect Control Hosp Epidemiol 29(8):723–729Google Scholar
  184. 184.
    Levin J, Riley LS, Parrish C, English D, Ahn S (2013) The effect of portable pulsed xenon ultraviolet light after terminal cleaning on hospital-associated Clostridium difficile infection in a community hospital. Am J Infect Control 41(8):746–748Google Scholar
  185. 185.
    Robert Koch-Institut (RKI) (2013) 3.3 Raumdesinfektion. In: Robert Koch-Institut (RKI) Liste der vom Robert Koch-Institut geprüften und anerkannten Desinfektionsmittel und -verfahren. Bundesgesundheitsbl 56(12):1706–1728Google Scholar
  186. 186.
    Reichenbacher D, Thanheiser M, Krüger D (2010) Aktueller Stand zur Raumdekontamination mit gasförmigem Wasserstoffperoxid Status quo of room decontamination by vaporized hydrogen peroxide. Hyg Med 35(6):204–208Google Scholar
  187. 187.
    Byrns G, Fuller TP (2011) The risks and benefits of chemical fumigation in the health care environment. J Occup Environ Hyg 8(2):104–112Google Scholar
  188. 188.
    Popp W (2014) Probleme bei der Etablierung eines Wasserstoffperoxid-Verneblers. Hyg Med 39(3):77–80Google Scholar
  189. 189.
    Manian FA, Meyer L, Jenne J (1996) Clostridium difficile contamination of blood pressure cuffs: a call for a closer look at gloving practices in the era of universal precautions. Infect Control Hosp Epidemiol 17(3):180–182Google Scholar
  190. 190.
    Vajravelu RK, Guerrero DM, Jury LA, Donskey CJ (2012) Evaluation of stethoscopes as vectors of Clostridium difficile and methicillin-resistant Staphylococcus aureus. Infect Control Hosp Epidemiol 33(1):96–98Google Scholar
  191. 191.
    Brooks S, Khan A, Stoica D et al (1998) Reduction in vancomycin-resistant Enterococcus and Clostridium difficile infections following change to tympanic thermometers. Infect Control Hosp Epidemiol 19(5):333–336 Google Scholar
  192. 192.
    Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO) (2012) Empfehlung zu den Anforderungen an die Hygiene bei der Aufbereitung von Medizinprodukten. Bundesgesundheitsbl 55(10):1244–1310Google Scholar
  193. 193.
    Kampf G (2008) Clostridium difficile – was ist für eine effektive Desinfektion zu beachten? Hyg Med 33(4):153–159Google Scholar
  194. 194.
    Nystrom B (1983) Disinfection in bed-pan washers. J Hosp Infect 4(2):191–198Google Scholar
  195. 195.
    Alfa MJ, Olson N, Buelow-Smith L (2008) Simulated-use testing of bedpan and urinal washer disinfectors: evaluation of Clostridium difficile spore survival and cleaning efficacy. Am J Infect Control 36(1):5–11Google Scholar
  196. 196.
    Alfa MJ, Olson N, Buelow-Smith L, Murray BL (2013) Alkaline detergent combined with a routine ward bedpan washer disinfector cycle eradicates Clostridium difficile spores from the surface of plastic bedpans. Am J Infect Control 41(4):381–383Google Scholar
  197. 197.
    MacDonald K, Bishop J, Dobbyn B, Kibsey P, Alfa MJ (2016) Reproducible elimination of Clostridium difficile spores using a clinical area washer disinfector in 3 different health care sites. Am J Infect Control 44(7):e107–e111Google Scholar
  198. 198.
    Muscarella LF (2010) Evaluation of the risk of transmission of bacterial biofilms and Clostridium difficile during gastrointestinal endoscopy. Gastroenterol Nurs 33(1):28–35Google Scholar
  199. 199.
    Kovaleva J, Peters FTM, van der Mei HC, Degener JE (2013) Transmission of infection by flexible gastrointestinal endoscopy and bronchoscopy. Clin Microbiol Rev 26(2):231–254Google Scholar
  200. 200.
    Pokrywka M, Buraczewski M, Frank D et al (2017) Can improving patient hand hygiene impact Clostridium difficile infection events at an academic medical center? Am J Infect Control 45(9):959–963Google Scholar
  201. 201.
    Pokrywka M, Feigel J, Douglas B et al (2014) A bundle strategy including patient hand hygiene to decrease clostridium difficile infections. Medsurg Nurs 23(3):145–148Google Scholar
  202. 202.
    Munoz-Price LS, Banach DB, Bearman G et al (2015) Isolation precautions for visitors. Infect Control Hosp Epidemiol 36(7):747–758Google Scholar
  203. 203.
    Ramphal L, Suzuki S, McCracken IM, Addai A (2014) Improving hospital staff compliance with environmental cleaning behavior. Proc (bayl Univ Med Cent) 27(2):88–91Google Scholar
  204. 204.
    Guerrero DM, Carling PC, Jury LA, Ponnada S, Nerandzic MM, Donskey CJ (2013) Beyond the Hawthorne effect: reduction of Clostridium difficile environmental contamination through active intervention to improve cleaning practices. Infect Control Hosp Epidemiol 34(5):524–526Google Scholar
  205. 205.
    Tomas ME, Sunkesula VC, Kundrapu S, Wilson BM, Donskey CJ (2015) An intervention to reduce health care personnel hand contamination during care of patients with Clostridium difficile infection. Am J Infect Control 43(12):1366–1367Google Scholar
  206. 206.
    Deutsche Gesellschaft für Infektiologie e. V. (DGI), Bundesverband Deutscher Krankenhausapotheker e. V. (ADKA), Deutsche Gesellschaft für Hygiene und Mikrobiologie (DGHM) et al. (2013) S3-Leitlinie. Strategien zur Sicherung rationaler Antibiotika-Anwendung im Krankenhaus. AWMF-Registernummer 092/001. http://www.awmf.org/leitlinien/detail/ll/092-001.html . Zugegriffen: 21. Febr. 2019 Google Scholar
  207. 207.
    Brown K, Valenta K, Fisman D, Simor A, Daneman N (2015) Hospital ward antibiotic prescribing and the risks of Clostridium difficile infection. Jama Intern Med 175(4):626–633Google Scholar
  208. 208.
    Sandora TJ, Fung M, Flaherty K et al (2011) Epidemiology and risk factors for Clostridium difficile infection in children. Pediatr Infect Dis J 30(7):580–584Google Scholar
  209. 209.
    Balch A, Wendelboe AM, Vesely SK, Bratzler DW (2017) Antibiotic prophylaxis for surgical site infections as a risk factor for infection with Clostridium difficile. PLoS ONE 12(6):e179117Google Scholar
  210. 210.
    Poeran J, Mazumdar M, Rasul R et al (2016) Antibiotic prophylaxis and risk of Clostridium difficile infection after coronary artery bypass graft surgery. J Thorac Cardiovasc Surg 151(2):589–597Google Scholar
  211. 211.
    McDonald LC, Gerding DN, Johnson S et al (2018) Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis 66(7):e1–e48Google Scholar
  212. 212.
    Shaughnessy MK, Amundson WH, Kuskowski MA, DeCarolis DD, Johnson JR, Drekonja DM (2013) Unnecessary antimicrobial use in patients with current or recent Clostridium difficile infection. Infect Control Hosp Epidemiol 34(2):109–116Google Scholar
  213. 213.
    Zweigner J, Meyer E, Gastmeier P, Schwab F (2018) Rate of antibiotic prescriptions in German outpatient care—are the guidelines followed or are they still exceeded? Gms Hyg Infect Control 13:Doc4Google Scholar
  214. 214.
    Kommission ART (16.02.2017) Voraussetzungen und Strategien für die erfolgreiche Implementierung infektiologischer Leitlinien – Positionspapier der Kommission ART. Positionspapier der Kommission Antiinfektiva, Resistenz und Therapie (Kommission ART) beim Robert Koch-Institut. https://www.rki.de/DE/Content/Kommissionen/ART/Positionspapier/Positionspapier_Leitlinien_Implementierung.html . Zugegriffen: 21. Febr. 2019
  215. 215.
    de With K (2017) Infektiologische Leitlinien: Nur die praktische Anwendung zählt. Dtsch Arztebl 114(8):A-368/B-318/C-311Google Scholar
  216. 216.
    Slimings C, Riley TV (2014) Antibiotics and hospital-acquired Clostridium difficile infection: update of systematic review and meta-analysis. J Antimicrob Chemother 69(4):881–891Google Scholar
  217. 217.
    Feazel LM, Malhotra A, Perencevich EN, Kaboli P, Diekema DJ, Schweizer ML (2014) Effect of antibiotic stewardship programmes on Clostridium difficile incidence: a systematic review and meta-analysis. J Antimicrob Chemother 69(7):1748–1754Google Scholar
  218. 218.
    Baur D, Gladstone BP, Burkert F et al (2017) Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: a systematic review and meta-analysis. Lancet Infect Dis 17(9):990–1001Google Scholar
  219. 219.
    European Centre for Disease Prevention and Control (ECDC) (2016) Proposals for draft EU guidelines on the prudent use of antimicrobials in human medicine. https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/draft-EU-guidelines-prudent-use-antimicrobials-human-medicine.pdf . Zugegriffen: 21. Febr. 2019 Google Scholar
  220. 220.
    Barlam TF, Cosgrove SE, Abbo LM et al (2016) Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis 62(10):e51–e77Google Scholar
  221. 221.
    Davey P, Marwick CA, Scott CL et al (2017) Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst Rev 2:CD003543Google Scholar
  222. 222.
    Dingle KE, Didelot X, Quan TP et al (2017) Effects of control interventions on Clostridium difficile infection in England: an observational study. Lancet Infect Dis 17(4):411–421Google Scholar
  223. 223.
    Lawes T, Lopez-Lozano JM, Nebot CA et al (2017) Effect of a national 4C antibiotic stewardship intervention on the clinical and molecular epidemiology of Clostridium difficile infections in a region of Scotland: a non-linear time-series analysis. Lancet Infect Dis 17(2):194–206Google Scholar
  224. 224.
    Hurst AL, Child J, Pearce K, Palmer C, Todd JK, Parker SK (2016) Handshake Stewardship: A Highly Effective Rounding-based Antimicrobial Optimization Service. Pediatr Infect Dis J 35(10):1104–1110Google Scholar
  225. 225.
    Bundesärztekammer (2017) Strukturierte curriculare Fortbildung „Antibiotic Stewardship (ABS). https://www.bundesaerztekammer.de/fileadmin/user_upload/downloads/pdf-Ordner/Fortbildung/Antibiotic_Stewardship.pdf . Zugegriffen: 21. Febr. 2019 Google Scholar
  226. 226.
    Robert Koch-Institut (RKI) (2013) Surveillance nosokomialer Infektionen sowie die Erfassung von Krankheitserregern mit speziellen Resistenzen und Multiresistenzen. Bundesgesundheitsbl 56:580–583Google Scholar
  227. 227.
    Kumar N, Miyajima F, He M et al (2016) Genome-Based Infection Tracking Reveals Dynamics of Clostridium difficile Transmission and Disease Recurrence. Clin Infect Dis 62(6):746–752Google Scholar
  228. 228.
    Knetsch CW, Lawley TD, Hensgens MP, Corver J, Wilcox MW, Kuijper EJ (2013) Current application and future perspectives of molecular typing methods to study Clostridium difficile infections. Euro Surveill 18(4):20381Google Scholar
  229. 229.
    Wilcox MH, Shetty N, Fawley WN et al (2012) Changing epidemiology of Clostridium difficile infection following the introduction of a national ribotyping-based surveillance scheme in England. Clin Infect Dis 55(8):1056–1063Google Scholar
  230. 230.
    Robert Koch-Institut (RKI) (2016) IfSG-Meldepflicht-Anpassungsverordnung: Zur Umsetzung der neuen Meldepflichten. Epidem Bull 16:135–136Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Personalised recommendations