Richtwerte für Stickstoffdioxid (NO2) in der Innenraumluft

Mitteilung des Ausschusses für Innenraumrichtwerte (AIR)
Bekanntmachungen – Amtliche Mitteilungen


  1. 1.
    Ad-hoc-Arbeitsgruppe der IRK/AOLG (1998) Richtwerte für Stickstoffdioxid in der Innenraumluft. Bundesgesundheitsbl 41:9-12CrossRefGoogle Scholar
  2. 2.
    WHO (2010) WHO guidelines for indoor air quality: selected pollutants. Nitrogen dioxide. World Health Organization. Regional Office for Europe, Copenhagen Google Scholar
  3. 3.
    HC (Health Canada) (2016) Human health risk assessment for ambient nitrogen dioxide. . Zugegriffen: 20. Dez. 2018 Google Scholar
  4. 4.
    US-EPA (2016) Integrated Science Assessment for Oxides of Nitrogen Health Criteria (2016 Final Report). EPA/600/R-15/068. NC; USA. . Zugegriffen: 20. Dez. 2018 Google Scholar
  5. 5.
    Mücke H-G, Wagner HM, Henschel S (2013) Anorganische Gase/Stickstoffdioxid. In: Handbuch der Umweltmedizin, Bd 3. Ecomed Verlag, S 42Google Scholar
  6. 6.
    UBA (2017) Luftschadstoff-Emissionen in Deutschland. Stickstoffoxide (NOx). Umweltbundesamt. . Zugegriffen: 20. Dez. 2018 Google Scholar
  7. 7.
    Minkos A, Dauert U, Feigenspan S et al (2018) Luftqualität 2017 – Hintergrund. Vorläufige Auswertung. Hg.: Umweltbundesamt, Dessau-Roßlau, Deutschland. . Zugegriffen: 20. Dez. 2018 Google Scholar
  8. 8.
    Cyrys J, Heinrich J, Richter K, Wölke G, Wichmann HE (2000) Sources and concentrations of indoor nitrogen dioxide in Hamburg (west Germany) and Erfurt (east Germany). Sci Total Environ 250:51–62CrossRefPubMedGoogle Scholar
  9. 9.
    Cotterill A, Kingham S (1997) Nitrogen dioxide in the home: cooking, double glazing or outdoor air? Indoor Built Environ 6:344–349CrossRefGoogle Scholar
  10. 10.
    Simoni M, Carrozzi L, Baldacci S, Scognamiglio A, Di Pede F, Sapigni T, Viegi G (2002) The Po river Delta (North Italy) indoor epidemiological Study: home characteristics, indoor pollutants, and subjects’ daily activity pattern. Arch Environ Health 57:130–136CrossRefPubMedGoogle Scholar
  11. 11.
    Garcıa Algar O, Pichini S, Basagana X et al (2004) Concentrations and determinants of NO2 in homes of Ashford, UK and Barcelona and Menorca, Spain. Indoor Air 14:298–304CrossRefPubMedGoogle Scholar
  12. 12.
    Topp R, Cyrys J, Gebefügi I et al (2004) Indoor and outdoor air concentrations of BTEX and NO2: correlation of repeated measurements. J Environ Monit 6:807–812CrossRefPubMedGoogle Scholar
  13. 13.
    Sakai K, Norbäck D, Mi Y et al (2004) A comparison of indoor air pollutants in Japan and Sweden: formaldehyde, nitrogen dioxide, and chlorinated volatile organic compounds. Environ Res 94:75–85CrossRefPubMedGoogle Scholar
  14. 14.
    Lai HK, Kendall M, Ferrier H et al (2004) Personal exposures and microenvironment concentrations of PM2.5, VOC, NO2 and CO in Oxford, UK. Atmos Environ 38:6399–6410CrossRefGoogle Scholar
  15. 15.
    Sorensen M, Loft S, Andersen HV et al (2005) Personal exposure to PM2.5, black smoke and NO2 in Copenhagen: relationship to bedroom and outdoor concentrations covering seasonal variation. J Expo Anal Environ Epidemiol 15:413–422CrossRefPubMedGoogle Scholar
  16. 16.
    Gallelli G, Orlando P, Perdelli F, Panatto D (2002) Factors affecting individual exposure to NO2 in Genoa (northern Italy). Sci Total Environ 287:31–36CrossRefPubMedGoogle Scholar
  17. 17.
    Kornartit C, Sokhi RS, Burton MA, Ravindra K (2010) Activity pattern and personal exposure to nitrogen dioxide in indoor and outdoor microenvironments. Environ Int 36:36–45CrossRefPubMedGoogle Scholar
  18. 18.
    Stranger M, Potgieter-Vermaak SS, Van Grieken R (2007) Comparative overview of indoor air quality in Antwerp, Belgium. Environ Int 33:789–797CrossRefPubMedGoogle Scholar
  19. 19.
    Wichmann J, Lind T, Nilsson MA-M, Bellander T (2010) PM2.5 soot and NO2 indoor-outdoor relationship at homes, pre-schools and schools in Stockholm, Sweden. Atmos Environ 44:4536–4544CrossRefGoogle Scholar
  20. 20.
    Valero N, Aguilera I, Llop S et al (2009) Concentrations and determinants of outdoor, indoor and personal nitrogen dioxide in pregnant women from two Spanish birth cohorts. Environ Int 35:1196–1201CrossRefPubMedGoogle Scholar
  21. 21.
    Bozkurt Z, Doğan G, Arslanbaş D et al (2015) Determination of the personal, indoor and outdoor exposure levels of inorganic gaseous pollutants in different microenvironments in an industrial city. Environ Monit Assess 187:590CrossRefPubMedGoogle Scholar
  22. 22.
    Schembari A, Triguero-Mas M, De Nazelle A et al (2013) Personal, indoor and outdoor air pollution levels among pregnant women. Atmos Environ 64:287–295CrossRefGoogle Scholar
  23. 23.
    Meier R, Eeftens M, Phuleria HC et al (2015) Differences in indoor versus outdoor concentrations of ultrafine particles, PM2.5, PM absorbance and NO2 in Swiss homes. J Expo Sci Environ Epidemiol 25:499–505CrossRefPubMedGoogle Scholar
  24. 24.
    Dėdelė A, Miškinytė A (2016) Seasonal variation of indoor and outdoor air quality of nitrogen dioxide in homes with gas and electric stoves. Environ Sci Pollut Res Int 23(17):17784–17792CrossRefPubMedGoogle Scholar
  25. 25.
    Jovanovic M, Vucicevic B, Turanjanin V, Zivkovi M, Spasojevic V (2014) Investigation of indoor and outdoor air quality of the classrooms at a school in Serbia. Energy 77:42–48CrossRefGoogle Scholar
  26. 26.
    Rivas I, Viana M, Moreno T et al (2014) Child exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain. Environ Int 69:200–212CrossRefPubMedGoogle Scholar
  27. 27.
    Levy JI, Lee K, Spengler JD, Yanagisawa Y (1998) Impact of Residential Nitrogen Dioxide Exposure on Personal Exposure: An International Study. JAWMA 48:553–560Google Scholar
  28. 28.
    Janssen NAH, van Vliet PHN, Aarts F, Harssema H, Brunekreef B (2001) Assessment of exposure to traffic related air pollution of children attending schools near motorways. Atmos Environ 35:3875–3884CrossRefGoogle Scholar
  29. 29.
    Kousa A, Monn C, Rotko T, Alm S, Oglesby L, Jantunen M (2001) Personal exposures to NO2 in the Expolisstudy: Relation to residential indoor, outdoor and workplace concentrations in Basel, Helsinki and Prague. Atmos Environ 35:3405–3412CrossRefGoogle Scholar
  30. 30.
    Gauvin S, Le Moullec Y, Bremont F, Momas I, Balducci F, Ciognard F, Poilve MP, Zmirou D (2001) Relationships between nitrogen dioxide personal exposure and ambient air monitoring measurements among children in three French metropolitan areas: VESTA study. Arch Environ Health 56(4):336–341CrossRefPubMedGoogle Scholar
  31. 31.
    Rotko T, Kousa A, Alm S, Jantunen M (2001) Exposures to nitrogen dioxide in EXPOLIS Helsinki: microenvironment, behavioral and sociodemographic factors. J Expo Anal Environ Epidemiol 11:216–233CrossRefPubMedGoogle Scholar
  32. 32.
    Emenius G, vartengren M, Korsgaard J, Nordvall L, Pershagen G, Wickman M (2004) Building characteristics, indoor air quality and recurrent wheezing in very young children (BAMSE). Indoor Air 14:34–42CrossRefPubMedGoogle Scholar
  33. 33.
    Bellander T, Wichmann J, Lind T (2012) Individual exposure to NO2 in relation to spatial and temporal exposure indices in Stockholm, Sweden: the INDEX study. PLoS ONE 7:e39536CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hannam K, McNamee R, De Vocht F, Baker P, Sibley C, Agius R (2013) A comparison of population air pollution exposure estimation techniques with personal exposure estimates in a pregnant cohort. Environ Sci Process Impacts 15:1562–1572CrossRefPubMedGoogle Scholar
  35. 35.
    Cibella F, Cuttitta G, Maggiore DR et al (2015) Effect of indoor nitrogen dioxide on lung function in urban environment. Environ Res 138:8–16CrossRefPubMedGoogle Scholar
  36. 36.
    Meng QY, Svendsgaard D, Kotchmar DJ, Pinto JP (2012) Associations between personal exposures and ambient concentrations of nitrogen dioxide: a quantitative research synthesis. Atmos Environ 57:322–329CrossRefGoogle Scholar
  37. 37.
    Alm S, Mukala K, Pasanen P et al (1998) Personal NO2 exposures of preschool children in Helsinki. J Expo Anal Environ Epidemiol 8:79–100PubMedGoogle Scholar
  38. 38.
    Piechocki-Minguy A, Plaisance H, Schadkowski C, Sagnier I, Saison JY, Gallo JC, Guillermo R (2006) A case study of personal exposure to nitrogen dioxide using a new high sensitive diffusive sampler. Sci Total Environ 366:55–64CrossRefPubMedGoogle Scholar
  39. 39.
    Yazar M, Bellander T, Merritt AS (2011) Personal exposure to carcinogenic and toxic air pollutants in Stockholm, Sweden: A comparison over time. Atmos Environ 45:2999–3004CrossRefGoogle Scholar
  40. 40.
    Van Roosbroeck S, Li R, Hoek G, Lebret E, Brunekreef B, Spiegelman D (2008) Traffic-related outdoor air pollution and respiratory symptoms in children: the impact of adjustment for exposure measurement error. Epidemiology 19:409–416CrossRefPubMedGoogle Scholar
  41. 41.
    Postlethwait EM, Bidani A (1990) Reactive uptake governs the pulmonary air space removal of inhaled nitrogen dioxide. J Appl Physiol 68:594–603CrossRefPubMedGoogle Scholar
  42. 42.
    Postlethwait EM, Langford SD, Jacobson LM, Bidani A (1995) NO2 reactive absorption substrates in rat pulmonary surface lining fluids. J Free Radic Biol Med 19:553–563CrossRefGoogle Scholar
  43. 43.
    Bidani A, Postlethwait EM (1998) Kinetic determinants of inhaled reactive gas absorption. In: Complexity in structure and function of the lung. Lung Biol Health Dis 121:243–296Google Scholar
  44. 44.
    Loria CM, Whelton PK, Caulfield LE, Szklo M, Klag MJ (1998) Agreement among indicators of vitamin C status. Am J Epidemiol 147:587–596CrossRefPubMedGoogle Scholar
  45. 45.
    Cahill L, Corey PN, El-Sohemy A (2009) Vitamin C deficiency in a population of young Canadian adults. Am J Epidemiol 170:464–471CrossRefPubMedGoogle Scholar
  46. 46.
    Postlethwait EM, Langford SD, Bidani A (1991) Transfer of NO2 through pulmonary epithelial lining fluid. Toxicol Appl Pharmacol 109(3):464–471CrossRefPubMedGoogle Scholar
  47. 47.
    Kleinman MT, Mautz WJ (1991) The effects of exercise on dose and dose distribution of inhaled automotive pollutants. Res Rep Health Eff Inst(45):1-40Google Scholar
  48. 48.
    Bauer MA, Utell MJ, Morrow PE et al (1986) Inhalation of 0.30 ppm nitrogen dioxide potentiates exercise-induced bronchospasm in asthmatics. Am Rev Respir Dis 134:1203–1208PubMedGoogle Scholar
  49. 49.
    MAK (Maximale Arbeitsplatzkonzentration) (2003) Stickstoffdioxid. 37. Lieferung. Wiley-VCH, WeinheimGoogle Scholar
  50. 50.
    MAK (Maximale Arbeitsplatzkonzentration) (2010) Stickstoffdioxid. 49. Lieferung. Wiley-VCH, WeinheimGoogle Scholar
  51. 51.
    Brand P, Bertram J, Chaker A, Jörres RA, Kronseder A, Kraus T, Gube M (2016) Biological effects of inhaled nitrogen dioxide in healthy human subjects. Int Arch Occup Environ Health 89:1017–1024CrossRefPubMedGoogle Scholar
  52. 52.
    Thurston GD, Kipen H, Annesi-Maesano I et al (2017) A joint ERS/ATS policy statement: What constitutes an adverse health effect of air pollution? An analytical framework. Eur Respir J 49:e1600419CrossRefGoogle Scholar
  53. 53.
    Brown JS (2015) Nitrogen dioxide exposure and airway responsiveness in individuals with asthma. Inhal Toxicol 27:1–14CrossRefPubMedGoogle Scholar
  54. 54.
    Goodman JE, Chandalia JK, Thakali S, Seeley M (2009) Meta-analysis of nitrogen dioxide exposure and airway hyper-responsiveness in asthmatics. Crit Rev Toxicol 39:719–742CrossRefPubMedGoogle Scholar
  55. 55.
    Goodman JE, Kennedy EM, Seeley M (2017) Do individuals with asthma experience airway hyper-responsiveness after exposure to nitrogen dioxide? Regul Toxicol Pharmacol 89:279–287CrossRefPubMedGoogle Scholar
  56. 56.
    Orehek J, Massari JP, Gayrard P et al (1976) Effect of short term, low level nitrogen dioxide exposure on bronchial sensitivity of asthmatic patients. J Clin Invest 57:301–307CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ahmed T, Dougherty R, Sackner MA (1983) Effect of 0.1 ppm NO2 on pulmonary functions and non-specific bronchial reactivity of normals and asthmatics [final report]. (CR-83/11/BI). General Motors Research Laboratories, Warren, MIGoogle Scholar
  58. 58.
    Ahmed T, Dougherty R, Sackner MA (1983) Effect of NO2 exposure on specific bronchial reactivity in subjects with allergic bronchial asthma [final report]. (CR-83/07/BI). General Motors Research Laboratories, Warren, MIGoogle Scholar
  59. 59.
    Hazucha MJ, Ginsberg JF, McDonnell WF, Haak ED, Pimmel RL, Salaam SA, House DE, Bromberg PA (1983) Effects of 0.1 ppm nitrogen dioxide on airways of normal and asthmatic subjects. J Appl Physiol Respir Environ Exerc Physiol 54:730–739PubMedGoogle Scholar
  60. 60.
    Tunnicliffe WS, Burge PS, Ayres JG (1994) Effect of domestic concentrations of nitrogen dioxide on airway responses to inhaled allergen in asthmatic patients. Lancet 344:1733–1736CrossRefPubMedGoogle Scholar
  61. 61.
    Kleinman MT, Bailey RM, Linn WS, Anderson KR, Whynot JD, Shamoo DA, Hackney JD (1983) Effects of 0.2 ppm nitrogen dioxide on pulmonary function and response to bronchoprovocation in asthmatics. J Toxicol Environ Health 12:815–826CrossRefPubMedGoogle Scholar
  62. 62.
    Bylin G, Hedenstierna G, Lindvall T, Sundin B (1988) Ambient nitrogen dioxide concentrations increase bronchial responsiveness in subjects with mild asthma. Eur Respir J 1:606–612PubMedGoogle Scholar
  63. 63.
    Jörres R, Magnussen H (1990) Airways response of asthmatics after a 30 min exposure, at resting ventilation, to 0.25 ppm NO2 or 0.5 ppm SO2. Eur Respir J 3:132–137PubMedGoogle Scholar
  64. 64.
    Strand V, Salomonsson P, Lundehl J, Bylin G (1996) Immediate and delayed effects of nitrogen dioxide exposure at an ambient level on bronchial responsiveness to histamine in subjects with asthma. Eur Respir J 9:733–740CrossRefPubMedGoogle Scholar
  65. 65.
    Strand V, Svartengren M, Rak S et al (1998) Repeated exposure to an ambient level of NO2 enhances asthmatic response to a nonsymptomatic allergen dose. Eur Respir J 12:6–12CrossRefPubMedGoogle Scholar
  66. 66.
    Avol EL, Linn Peng WSRC et al (1988) Laboratory study of asthmatic volunteers exposed to nitrogen dioxide and to ambient air pollution. Am Ind Hyg Assoc J 49:143–149CrossRefPubMedGoogle Scholar
  67. 67.
    Folinsbee LJ (1992) Does nitrogen dioxide exposure increase airways responsiveness? Toxicol Ind Health 8:273–283CrossRefPubMedGoogle Scholar
  68. 68.
    Kjaergaard SK, Rasmussen TR (1996) Clinical studies of effects of nitrogen oxides in healthy and asthmatic subjects. Cent Eur J Public Health 4:23–26PubMedGoogle Scholar
  69. 69.
    Hesterberg TW, Bunn WB, McClellan RO et al (2009) Critical review of the human data on short-term nitrogen dioxide (NO2) exposures: Evidence for NO2 no-effect levels. Crit Rev Toxicol 39:743–781CrossRefPubMedGoogle Scholar
  70. 70.
    Reddel HK, Taylor DR, Bateman ED, Boulet LP, Boushey HA, Busse WW, Casale TB, Chanez P, Enright PL, Gibson PG, de Jongste JC, Kerstjens HA, Lazarus SC, Levy ML, O’Byrne PM, Partridge MR, Pavord ID, Sears MR, Sterk PJ, Stoloff SW, Sullivan SD, Szefler SJ, Thomas MD, Wenzel SE (2009) An official American Thoracic Society/European Respiratory Society statement: asthma control and exacerbations: standardizing endpoints for clinical asthma trials and clinical practice. Am J Respir Crit Care Med 180:59–99CrossRefPubMedGoogle Scholar
  71. 71.
    Paulin LM, D’L W, Peng R, Diette GB, McCormack MC, Breysse P, Hansel NN (2017) 24-h Nitrogen dioxide concentration is associated with cooking behaviors and an increase in rescue medication use in children with asthma. Environ Res 159:118–123CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    DeVries R, Kriebel D, Sama S (2017) Outdoor Air Pollution and COPD-Related Emergency Department Visits, Hospital Admissions, and Mortality: A Meta. Analysis Copd 14:113–121CrossRefPubMedGoogle Scholar
  73. 73.
    Zhang Z, Wang J, Lu W (2018) Exposure to nitrogen dioxide and chronic obstructive pulmonary disease (COPD) in adults: a systematic review and meta-analysis. Environ Sci Pollut Res Int 25:15133–15145CrossRefPubMedGoogle Scholar
  74. 74.
    Heinrich J, Schikowski T (2018) COPD Patients as Vulnerable Subpopulation for Exposure to Ambient Air Pollution. Curr Environ Health Rep 5(1):70–76 (Mar)CrossRefPubMedGoogle Scholar
  75. 75.
    Nhung NTT, Amini H, Schindler C, Kutlar Joss M, Dien TM, Probst-Hensch N, Perez L, Künzli N (2017) Short-term association between ambient air pollution and pneumonia in children: A systematic review and meta-analysis of time-series and case-crossover studies. Environ Pollut 230:1000–1008CrossRefPubMedGoogle Scholar
  76. 76.
    Orellano P, Quaranta N, Reynoso J, Balbi B, Vasquez J (2017) Association of outdoor air pollution with the prevalence of asthma in children of Latin America and the Caribbean: A systematic review and meta-analysis. J Asthma 6:1–13Google Scholar
  77. 77.
    Zou QY, Shen Y, Ke X, Hong SL, Kang HY (2018) Exposure to air pollution and risk of prevalence of childhood allergic rhinitis: A meta-analysis. Int J Pediatr Otorhinolaryngol 112:82–90CrossRefPubMedGoogle Scholar
  78. 78.
    Gilmour MI, Park P, Selgrade MJ (1996) Increased immune and inflammatory responses to dust mite antigen in rats exposed to 5 ppm NO2. Fundam Appl Toxicol 31:65–70CrossRefPubMedGoogle Scholar
  79. 79.
    Holmes AM, Solari R, Holgate ST (2011) Animal models of asthma: value, limitations and opportunities for alternative approaches. Drug Discov Today 16:659–670CrossRefPubMedGoogle Scholar
  80. 80.
    Edwards J, Belvisi M, Dahlen SE, Holgate S, Holmes A (2015) Human tissue models for a human disease: what are the barriers? Thorax 70:695–697CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Belanger K, Holford TR, Gent JF, Hill ME, Kezik JM, Leaderer BP (2013) Household levels of nitrogen dioxide and pediatric asthma severity. Epidemiology 24:320–330CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Lin W, Brunekreef B, Gehring U (2013) Meta-analysis of the effects of indoor nitrogen dioxide and gas cooking on asthma and wheeze in children. Int J Epidemiol 42:1724–1737CrossRefPubMedGoogle Scholar
  83. 83.
    Pilotto LS, Nitschke M, Smith BJ, Pisaniello D, Ruffin RE, McElroy HJ, Martin J, Hiller JE (2004) Randomized controlled trial of unflued gas heater replacement on respiratory health of asthmatic schoolchildren. Int J Epidemiol 33:208–214CrossRefPubMedGoogle Scholar
  84. 84.
    Marks GB, Ezz W, Aust N, Toelle BG, Xuan W, Belousova E, Cosgrove C, Jalaludin B, Smith WT (2010) Respiratory health effects of exposure to low-NOx unflued gas heaters in the classroom: a double-blind, cluster-randomized, crossover study. Environ Health Perspect 118:1476–1482CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Kanchongkittiphong W, Mendell MJ, Gaffin JM et al (2015) Indoor environmental exposures and exacerbation of asthma: an update to the 2000 review by the Institute of Medicine. Environ Health Perspect 123:6–20CrossRefGoogle Scholar
  86. 86.
    Smith BJ, Nitschke M, Pilotto LS, Ruffin RE, Pisaniello DL, Willson KJ (2000) Health effects of daily indoor nitrogen dioxide exposure in people with asthma. Eur Respir J 16:879–885CrossRefPubMedGoogle Scholar
  87. 87.
    Belanger K, Gent JF, Triche EW, Bracken MB, Leaderer BP (2006) Association of indoor nitrogen dioxide exposure with respiratory symptoms in children with asthma. Am J Respir Crit Care Med 173:297–303CrossRefPubMedGoogle Scholar
  88. 88.
    Nitschke M, Pilotto LS, Attewell RG, Smith BJ, Pisaniello D, Martin J, Ruffin RE, Hiller JE (2006) A cohort study of indoor nitrogen dioxide and house dust mite exposure in asthmatic children. J Occup Environ Med 48:462–469CrossRefPubMedGoogle Scholar
  89. 89.
    Kattan M, Gergen PJ, Eggleston P, Visness CM, Mitchell HE (2007) Health effects of indoor nitrogen dioxide and passive smoking on urban asthmatic children. J Allergy Clin Immunol 120:618–624CrossRefPubMedGoogle Scholar
  90. 90.
    Hansel NN, Breysse PN, McCormack MC, Matsui EC, Curtin-Brosnan J, Williams DAL, Moore JL, Cuhran JL, Diette GB (2008) A longitudinal study of indoor nitrogen dioxide levels and respiratory symptoms in inner-city children with asthma. Environ Health Perspect 116:1428–1432CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Lipfert FW (2017) A critical review of the ESCAPE project for estimating long-term health effects of air pollution. Environ Int 99:87–96CrossRefPubMedGoogle Scholar
  92. 92.
    Lipfert F (2018) Long-term associations of morbidity with air pollution: A catalog and synthesis. J Air Waste Manag Assoc 68(1):12–28CrossRefPubMedGoogle Scholar
  93. 93.
    Schneider A, Cyrys J, Breitner S, Kraus U, Peters A, Diegmann V, Neunhäuserer L (2018) Quantifizierung von umweltbedingten Krankheitslasten aufgrund der Stickstoffdioxid-Exposition in Deutschland. Abschlussbericht, überarbeitete Version (Februar 2018). FKZ 3715 61 201 0. UBA-FB 002600 Google Scholar
  94. 94.
    WHO (2013) Review of evidence on health aspects of air pollution – REVIHAAP project. Technical report. World Health Organization. Regional Office for Europe, Copenhagen Google Scholar
  95. 95.
    Setton E, Marshall JD, Brauer M, Lundquist KR, Hystad P, Keller P, Cloutier-Fisher D (2011) The impact of daily mobility on exposure to traffic-related air pollution and health effect estimates. J Expo Sci Environ Epidemiol 21(1):42–48CrossRefPubMedGoogle Scholar
  96. 96.
    WHO (2016) WHO expert consultation: available evidence for the future update of the WHO global air quality guidelines (AQGs). WHO Regional Office for Europe, Copenhagen Google Scholar
  97. 97.
    Faustini A, Rapp R, Forastiere F (2014) Nitrogen dioxide and mortality: review and meta-analysis of long-term studies. Eur Respir J 44(3):744–753CrossRefPubMedGoogle Scholar
  98. 98.
    Khreis H, Kelly C, Tate J, Parslow R, Lucas K, Nieuwenhuijsen M (2017) Exposure to traffic-related air pollution and risk of development of childhood asthma: A systematic review and meta-analysis. Environ Int 100:1–31CrossRefPubMedGoogle Scholar
  99. 99.
    Korek M, Johansson C, Svensson N, Lind T, Beelen R, Hoek G, Pershagen G, Bellander T (2017) Can dispersion modeling of air pollution be improved by land-use regression? An example from Stockholm. Sweden J Expo Science Environ Epidemiol 27:575–581CrossRefGoogle Scholar
  100. 100.
    Khreis H, Nieuwenhuijsen MJ (2017) Traffic-Related Air Pollution and Childhood Asthma: Recent Advances and Remaining Gaps in the Exposure Assessment Methods. Int J Environ Res Public Health 14:312–331CrossRefPubMedCentralGoogle Scholar
  101. 101.
    Ichinose T, Sagai M (1982) Studies on biochemical effects of nitrogen dioxide. III. Changes of the antioxidative protective systems in rat lungs and of lipid peroxidation by chronic exposure. Toxicol Appl Pharmacol 66:l–8CrossRefGoogle Scholar
  102. 102.
    Sagai M, Ichinose T, Kubota K (1984) Studies on the biochemical effects of nitrogen dioxide. IV. Relation between the change of lipid peroxidation and the antioxidative protective system in rat lungs upon life span exposure to low levels of NO2. Toxicol Appl Pharmacol 73:444–456CrossRefPubMedGoogle Scholar
  103. 103.
    Kubota K, Murakami M, Takenaka S, Kawai K, Kyono H (1987) Effects of long-term nitrogen dioxide exposure on rat lung: morphological observations. Environ Health Perspect 73:157–169CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Sagai M, Ichinose T (1987) Lipid Peroxidation and Antioxidative Protection Mechanism in Rat Lungs upon Acute and Chronic Exposure to Nitrogen Dioxide. Environ Health Perspect 73(1987):179–189CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Stephens RJ, Freeman G, Crane SC, Furiosi NJ (1971) Ultrastructural changes in the terminal bronchiole of the rat during continuous, low-level exposure to nitrogen dioxide. Exp Mol Pathol 14:1–19CrossRefPubMedGoogle Scholar
  106. 106.
    Freeman G, Furiosi NJ, Haydon GB (1966) Effects of continuous exposure of 0.8 ppm NO2 on respiration of rats. Arch Environ Health 13:454–456CrossRefPubMedGoogle Scholar
  107. 107.
    Freeman G, Crane SC, Stephens RJ, Furiosi NJ (1968) Pathogenesis of the nitrogen dioxide-induced lesion in the rat lung: a review and presentation of new observations. Am Rev Respir Dis 98:429–443PubMedGoogle Scholar
  108. 108.
    Han M, Ji X, Li G, Sang N (2017) NO2 inhalation enhances asthma susceptibility in a rat model. Env Sci Pollut Res 24:27843–27854CrossRefGoogle Scholar
  109. 109.
    Yue H, Yan W, Ji X, Gao R, Ma J, Rao Z, Li G, Sang N (2017) Maternal Exposure of BALB/c Mice to Indoor NO2 and Allergic Asthma Syndrome in Offspring at Adulthood with Evaluation of DNA Methylation Associated Th2 Polarization. Environ Health Perspect 125:97011CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Han M, Guo Z, Li G, Sang N (2013) Nitrogen dioxide inhalation induces genotoxicity in rats. Chemosphere 90:2737–2742CrossRefPubMedGoogle Scholar
  111. 111.
    Rubenchik BL, Glavin AA, Galenko PM, Kilkichko AA, Oleinick IO, Artemov KV (1995) Gaseous nitrogen dioxide increases the endogenous synthesis of carcinogenic N-nitrosodimethylamine in animals. J Environ Pathol Toxicol Oncol 14:111–115PubMedGoogle Scholar
  112. 112.
    Ichinose T, Fujii K, Sagai M (1991) Experimental studies on tumor promotion by nitrogen dioxide. Toxicol 67:211–225CrossRefGoogle Scholar
  113. 113.
    Filippini T, Heck JE, Malagoli C, Del Giovane C, Vinceti M (2015) A review and meta-analysis of outdoor air pollution and risk of childhood leukemia. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 33(1):36–66CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Hamra GB, Laden F, Cohen AJ, Raaschou-Nielsen O, Brauer M, Loomis D (2015) Lung Cancer and Exposure to Nitrogen Dioxide and Traffic: A Systematic Review and Meta-Analysis. Environ Health Perspect 123(11):1107–1112CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Turner MC, Krewski D, Diver WR, Pope CA 3rd, Burnett RT, Jerrett M, Marshall JD, Gapstur SM (2017) Ambient Air Pollution and Cancer Mortality in the Cancer Prevention Study II. Environ Health Perspect 125(8):87013. CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Datzmann T, Markevych I, Trautmann F, Heinrich J, Schmitt J, Tesch F (2018) Outdoor air pollution, green space, and cancer incidence in Saxony: a semi-individual cohort study. BMC Public Health 18:715. CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Fan HC, Chen CY, Hsu YC, Chou RH, Teng CLJ, Chiu CH, Hsu CY, Muo CH, Chang MY, Chang KH (2018) Increased risk of incident nasopharyngeal carcinoma with exposure to air pollution. PLoS ONE 13(9):e204568. CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Nagata Y (2003) Measurement of odor threshold by triangle odor bag method. Odor measurement review. . Zugegriffen: 20. Dez. 2018
  119. 119.
    US-EPA (2018a ) Fact sheet final rulemaking review of the primary National Ambient Air Quality Standards for oxides of nitrogen. . Zugegriffen: 20. Dez. 2018
  120. 120.
    US-EPA (2018b ) Review of the primary National Ambient Air Quality Standards for oxides of nitrogen. . Zugegriffen: 20. Dez. 2018 Google Scholar
  121. 121.
    Rombout PJ, Dormans JA, Marra M, van Esch GJ (1986) Influence of exposure regimen on nitrogen dioxide-induced morphological changes in the rat lung. Environ Res 41:466–480CrossRefPubMedGoogle Scholar
  122. 122.
    Illing JW, Miller FJ, Gardner DE (1980) Decreased resistence to infection in exercised mice exposed to NO2 and O3. J Toxicol Environ Health 6:843–851CrossRefPubMedGoogle Scholar
  123. 123.
    AGS (Ausschuss für Gefahrstoffe) (2018) Grenzwerte in der Luft am Arbeitsplatz – Luftgrenzwerte (TRGS 900). BArBl Heft 1/2006 S. 41–55. Geändert und ergänzt: GMBl 2018 S.542–545[Nr. 28] Google Scholar
  124. 124.
    EU-SCOEL/SUM/53 (2014) Recommendation from the Scientific Committee on Occupational Exposure Limits for Nitrogen Dioxide Google Scholar
  125. 125.
    Richtlinie (EU) 2017/164 der Kommission vom 31. Januar 2017 zur Festlegung einer vierten Liste von Arbeitsplatz-Richtgrenzwerten in Durchführung der Richtlinie 98/24/EG des Rates und zur Änderung der Richtlinien 91/322/EWG, 2000/39/EG und 2009/161/EU der Kommission. C/2017/0396 Google Scholar
  126. 126.
    Air Resources Board (2010) California Ambient Air Quality Standard. . Zugegriffen: 20. Dez. 2018 Google Scholar
  127. 127.
    Australian Government (2018) Air quality standards. . Zugegriffen: 20. Dez. 2018 Google Scholar
  128. 128.
    WHO (2000) WHO Regional Office for Europe. Air quality guidelines for Europe. 2nd ed. Copenhagen, Denmark Google Scholar
  129. 129.
    EU (2008) Richtlinie 2008/50/EG des Europäischen Parlaments und des Rates vom 21. Mai 2008 über Luftqualität und saubere Luft für Europa. ABl EU 152 Google Scholar
  130. 130.
    Kraft M, Eikmann T, Kappos A, Künzli N, Rapp R, Schneider K, Seitz H, Voss JU, Wichmann HE (2005) The German view: effects of nitrogen dioxide on human health – derivation of health-related short-term and long-term values. Int J Hyg Environ Health 208(4):305–318CrossRefPubMedGoogle Scholar
  131. 131.
    Health Canada (2015) Residential indoor air quality guidelines: nitrogen dioxide. Version 2015-11-26. . Zugegriffen: 20. Dez. 2018 Google Scholar
  132. 132.
    US-EPA (2017) Indoor air quality for nitrogen dioxide. . Zugegriffen: 20. Dez. 2018 Google Scholar
  133. 133.
    ANSES (2013) Indoor air quality guidelines. French Agency for Food, Environment and Occupational Health and Safety. . Zugegriffen: 20. Dez. 2018 Google Scholar
  134. 134.
    Ad-hoc-AG (2012) Richtwerte für die Innenraumluft: erste Fortschreibung des Basisschemas. Bundesgesundheitsbl 55:279–290CrossRefGoogle Scholar
  135. 135.
    Jörres R, Nowak D, Grimminger F et al (1995) The effect of 1 ppm nitrogen dioxide on bronchoalveolar lavage cells and inflammatory mediators in normal and asthmatic subjects. Eur Respir J 8:416–424CrossRefPubMedGoogle Scholar
  136. 136.
    Johansson MKV, Johanson G, Öberg M (2016) Evaluation of the experimental basis for assessment factors to protect individuals with asthma from health effects during short term exposure to airborne chemicals. Crit Rev Toxicol 46:241–260CrossRefPubMedGoogle Scholar
  137. 137.
    Avol EL, Linn WS, Peng RC et al (1989) Experimental exposures of young asthmatic volunteers to 0.3 ppm nitrogen dioxide and to ambient air pollution. Toxicol Ind Health 5:1025–1034CrossRefPubMedGoogle Scholar
  138. 138.
    DIN (2009) DIN EN ISO 16000-15:2009-04 Innenraumluftverunreinigungen – Teil 15: Probenahmestrategie für Stickstoffdioxid (NO2), Beuth Verlag, Berlin Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Personalised recommendations