Advertisement

Thrombozytenfunktionsstörung bei Traumapatienten, ein unterschätztes Problem? Ergebnisse einer monozentrischen Untersuchung

  • V. Hofer
  • H. Wrigge
  • A. Wienke
  • G. Hofmann
  • P. Hilbert-CariusEmail author
Originalien
  • 98 Downloads

Zusammenfassung

Hintergrund

Plasmatische Gerinnungsstörungen bei Schwerverletzten sind häufig; zu thrombozytären Funktionsstörungen existiert nur wenig Evidenz. Ein Monitoring der Thrombozytenfunktion ist nicht etabliert.

Methodik

Retrospektive monozentrische Studie an einem überregionalen Traumazentrum von 2010–2016. Bei Patienten, die nach den Kriterien des DGU-Traumaregisters über den Schockraum als Direktzuweisung vom Unfallort aufgenommen wurden, war eine Bestimmung der Thrombozytenfunktion mittels Platelet Function Analyzer (PFA 100®) erfolgt. Nach Ausschluss aller Patienten mit gerinnungswirksamer Dauermedikation wurden mögliche Einflussfaktoren einer Thrombozytenfunktionsstörung ermittelt.

Ergebnisse

Von 310 Patienten (44,0 ± 14,7 Jahre, 76 % männlich, Verletzungsschwere im „Injury Severity Score“ [ISS] 28,4 ± 14,2 Punkte) zeigten sich eine verzögerte Thrombozytenaktivierung im Ansatz mit ADP bei 25,5 %, mit Epinephrin bei 31 %. In Laborparametern ergaben sich Hinweise auf einen höheren Blutverlust. Verlängerte Verschlusszeiten gingen einher mit einer erhöhten Transfusionsrate und einer erhöhten Mortalität. Logistische Regression identifizierte den Hb(Hämoglobin)- und Fibrinogenwert bei Aufnahme als unabhängige Prädiktoren einer Thrombozytenfunktionsstörung, sowohl im Ansatz mit Adenosindiphosphat (ADP) (p < 0,001, Cohens f = 0,61) als auch mit Epinephrin (p < 0,001, f = 0,42).

Interpretation

Bei einem Viertel bis einem Drittel der primär zugewiesenen Traumapatienten ohne gerinnungsaktive Dauermedikation zeigte sich eine verzögerte Thrombozytenaktivierung im PFA-100-Test. Bei Berücksichtigung aller Traumapatienten ist von einer noch höheren Rate auszugehen. Über den Hb- und den Fibrinogenwert im Schockraum ist eine orientierende Einschätzung möglich. Die Entwicklung differenzierungsfähiger Testverfahren der Thrombozytenfunktion für die Schockraumversorgung des individuellen Patienten erscheint dringend notwendig.

Schlüsselwörter

Trauma Thrombozytenfunktion Gerinnungsstörung Fibrinogen Hämoglobin 

Platelet function disorder in trauma patients, an underestimated problem? Results of a single center study

Abstract

Background

Plasmatic coagulation disorders in trauma patients are common and their management is subject to current guidelines. Less evidence exists for platelet function. Although it is known that several trauma-associated factors have a negative influence on platelet function, routine monitoring has not yet become established.

Methods

A retrospective single center study was carried out at a German level 1 trauma center from 2010 to 2016. In all patients fulfilling the requirements for the German Trauma Society (DGU) Traumaregister® who were admitted directly from the scene of the incident, platelet function was analyzed using the Platelet Function Analyzer (PFA 100®) with adenosine diphosphate (ADP) and epinephrine as activation factors. After exclusion of patients with intake of long-term anticoagulant and antiaggregant medication, possible influencing factors of a reduced platelet function were identified.

Results

The results from 310 patients (44.0 ± 14.7 years, 76% male, Injury Severity Score, ISS 28.4 ± 14.2 points) were available. A delayed platelet activation was found in 25.5% using ADP and 31% using epinephrine. Laboratory parameters indicated a greater blood loss. Prolonged closure times were associated with an increased transfusion rate of packed red blood cell concentrates and a higher mortality rate. Logistic regression revealed hemoglobin (Hb) and fibrinogen levels at admission to be independent predictors for a decreased platelet activation in the assay with ADP (p < 0.001, Cohen’s f = 0.61) and with epinephrine (p < 0.001, f = 0.42).

Conclusion

Approximately one quarter to one third of primarily admitted trauma patients without long-term anticoagulation medication showed a delayed platelet activation in the PFA-100 test. By considering all trauma patients an even higher rate can be expected. The Hb and fibrinogen levels at admission can be helpful to estimate platelet disorders. The development of platelet assays to guide the resuscitation of individual patients seems to be absolutely necessary. The contribution of platelet disorders to trauma-induced coagulopathy is not sufficiently understood. Regarding the importance assigned to platelet transfusion or administration of desmopressin, these aspects should be the subject of further research.

Keywords

Trauma Platelet function Coagulation disorders Fibrinogen Hemoglobin 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

V. Hofer, H. Wrigge, A. Wienke und G. Hofmann geben an, dass kein Interessenkonflikt besteht. P. Hilbert-Carius hat Vortragshonorare von CSL Behring erhalten.

Diese retrospektive Studie erfolgte nach Konsultation der zuständigen Ethikkommission und im Einklang mit nationalem Recht.

Supplementary material

101_2019_597_MOESM1_ESM.docx (18 kb)
ESM-Tab. S1_Berechnung der Verschlusszeiten mittels Korrekturformel nach Kuiper et al.

Literatur

  1. 1.
    Brown LM, Call MS, Margaret Knudson M et al (2011) A normal platelet count may not be enough: the impact of admission platelet count on mortality and transfusion in severely injured trauma patients. J Trauma 71:S337–342CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Caballo C, Escolar G, Diaz-Ricart M et al (2013) Impact of experimental haemodilution on platelet function, thrombin generation and clot firmness: effects of different coagulation factor concentrates. Blood Transfus 11:391–399PubMedPubMedCentralGoogle Scholar
  3. 3.
    Cardenas JC, Zhang X, Fox EE et al (2018) Platelet transfusions improve hemostasis and survival in a substudy of the prospective, randomized PROPPR trial. Blood Adv 2:1696–1704CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Caspers M, Schafer N, Frohlich M et al (2018) How do external factors contribute to the hypocoagulative state in trauma-induced coagulopathy?—In vitro analysis of the lethal triad in trauma. Scand J Trauma Resusc Emerg Med 26:66CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Castellino FJ, Chapman MP, Donahue DL et al (2014) Traumatic brain injury causes platelet adenosine diphosphate and arachidonic acid receptor inhibition independent of hemorrhagic shock in humans and rats. J Trauma Acute Care Surg 76:1169–1176CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum, New JerseyGoogle Scholar
  7. 7.
    Djaldetti M, Fishman P, Bessler H et al (1979) pH-induced platelet ultrastructural alterations. A possible mechanism for impaired platelet aggregation. Arch Surg 114:707–710CrossRefPubMedGoogle Scholar
  8. 8.
    Endo A, Shiraishi A, Fushimi K et al (2018) Outcomes of patients receiving a massive transfusion for major trauma. Br J Surg 105:1426–1434CrossRefPubMedGoogle Scholar
  9. 9.
    Franchini M (2007) The use of desmopressin as a hemostatic agent: a concise review. Am J Hematol 82:731–735CrossRefPubMedGoogle Scholar
  10. 10.
    Hanke AA, Dellweg C, Kienbaum P et al (2010) Effects of desmopressin on platelet function under conditions of hypothermia and acidosis: an in vitro study using multiple electrode aggregometry. Anaesthesia 65:688–691CrossRefPubMedGoogle Scholar
  11. 11.
    Hanke AA, Horstmann H, Wilhelmi M (2017) Point-of-care monitoring for the management of trauma-induced bleeding. Curr Opin Anaesthesiol 30:250–256CrossRefGoogle Scholar
  12. 12.
    Harrison P, Robinson MS, Mackie IJ et al (1999) Performance of the platelet function analyser PFA-100 in testing abnormalities of primary haemostasis. Blood Coagul Fibrinolysis 10:25–31CrossRefPubMedGoogle Scholar
  13. 13.
    Hilbert-Carius P, Hofmann G, Stuttmann R (2015) Hemoglobin-oriented and coagulation factor-based algorithm : Effect on transfusion needs and standardized mortality rate in massively transfused trauma patients. Anaesthesist 64:828–838CrossRefPubMedGoogle Scholar
  14. 14.
    Hilbert-Carius P, Hofmann GO, Lefering R et al (2016) Clinical presentation and blood gas analysis of multiple trauma patients for prediction of standard coagulation parameters at emergency department arrival. Anaesthesist 65:274–280CrossRefPubMedGoogle Scholar
  15. 15.
    Hilbert P, Hofmann GO, Zur Nieden K et al (2012) Coagulation management of trauma patients with unstabile circulation : establishment of a hemoglobin-oriented standard operating procedure. Anaesthesist 61:703–710CrossRefPubMedGoogle Scholar
  16. 16.
    Holcomb JB, Del Junco DJ, Fox EE et al (2013) The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks. JAMA Surg 148:127–136CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Holcomb JB, Tilley BC, Baraniuk S et al (2015) Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial. JAMA 313:471–482CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jacoby RC, Owings JT, Holmes J et al (2001) Platelet activation and function after trauma. J Trauma 51:639–647CrossRefPubMedGoogle Scholar
  19. 19.
    Kasotakis G, Starr N, Nelson E et al (2018) Platelet transfusion increases risk for acute respiratory distress syndrome in non-massively transfused blunt trauma patients. Eur J Trauma Emerg Surg.  https://doi.org/10.1007/s00068-018-0953-4 CrossRefPubMedGoogle Scholar
  20. 20.
    Gerhardus JA, Kuiper JM, Houben R, Wetzels RJH et al (2017) The use of regression analysis in determining reference intervals for low hematocrit and thrombocyte count in multiple electrode aggregometry and platelet function analyzer 100 testing of platelet function. Platelets 28:668–675CrossRefGoogle Scholar
  21. 21.
    Kundu SK, Heilmann EJ, Sio R et al (1996) Characterization of an in vitro platelet function analyzer, PFA-100(TM). Clin Appl Thromb Hemost 2:241–249CrossRefGoogle Scholar
  22. 22.
    Kutcher ME, Redick BJ, Mccreery RC et al (2012) Characterization of platelet dysfunction after trauma. J Trauma Acute Care Surg 73:13–19CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Leitlinien ADWMFa-SK (2017) S3 Leitlinie Polytrauma/Schwerverletzten-Behandlung. Registernummer 012-019. Stand 25.08.2017. https://www.awmf.org/uploads/tx_szleitlinien/012-019m_S3_Polytrauma_Schwerverletzten-Behandlung_2016-09.pdf. Zugegriffen: 1. Jan. 2019Google Scholar
  24. 24.
    Lutze G, Kropf S (2004) Blutungszeit in vitro am PFA-100®: Präanalytik bei der Blutentnahme/Bleeding time in vitro measured by the PFA-100® system: Pre-analytical conditions for blood collection. LaboratoriumsMedizin 28:463–469CrossRefGoogle Scholar
  25. 25.
    Moore HB, Moore EE, Chapman MP et al (2015) Viscoelastic measurements of platelet function, not fibrinogen function, predicts sensitivity to tissue-type plasminogen activator in trauma patients. J Thromb Haemost 13:1878–1887CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ng KF, Cheung CW, Lee Y et al (2011) Low-dose desmopressin improves hypothermia-induced impairment of primary haemostasis in healthy volunteers. Anaesthesia 66:999–1005CrossRefPubMedGoogle Scholar
  27. 27.
    Ramsey MT, Fabian TC, Shahan CP et al (2016) A prospective study of platelet function in trauma patients. J Trauma Acute Care Surg 80:726–732 (discussion 732–723)CrossRefPubMedGoogle Scholar
  28. 28.
    Rossaint R, Bouillon B, Cerny V et al (2016) The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care 20:100CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shenkman B, Budnik I, Einav Y et al (2017) Model of trauma-induced coagulopathy including hemodilution, fibrinolysis, acidosis, and hypothermia: Impact on blood coagulation and platelet function. J Trauma Acute Care Surg 82:287–292CrossRefPubMedGoogle Scholar
  30. 30.
    Solomon C, Traintinger S, Ziegler B et al (2011) Platelet function following trauma. A multiple electrode aggregometry study. Thromb Haemostasis 106:322–330CrossRefGoogle Scholar
  31. 31.
    Vulliamy P, Gillespie S, Gall LS et al (2017) Platelet transfusions reduce fibrinolysis but do not restore platelet function during trauma hemorrhage. J Trauma Acute Care Surg 83:388–397CrossRefPubMedGoogle Scholar
  32. 32.
    Wohlauer MV, Moore EE, Thomas S et al (2012) Early platelet dysfunction: an unrecognized role in the acute coagulopathy of trauma. J Am Coll Surg 214:739–746CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zipperle J, Altenburger K, Ponschab M et al (2017) Potential role of platelet-leukocyte aggregation in trauma-induced coagulopathy: Ex vivo findings. J Trauma Acute Care Surg 82:921–926CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • V. Hofer
    • 1
    • 2
  • H. Wrigge
    • 1
  • A. Wienke
    • 3
  • G. Hofmann
    • 4
    • 5
  • P. Hilbert-Carius
    • 1
    Email author
  1. 1.Klinik für Anästhesiologie, Intensiv‑, Notfallmedizin und SchmerztherapieBergmannstrost BG-Klinikum Halle (Saale)Halle (Saale)Deutschland
  2. 2.Klinik für AnästhesiologieUniversitätsklinik RegensburgRegensburgDeutschland
  3. 3.Institut für Medizinische Epidemiologie, Biometrie und InformatikMartin-Luther-Universität Halle-WittenbergHalle (Saale)Deutschland
  4. 4.Klinik für Unfall- und WiederherstellungschirurgieBergmannstrost BG-Klinikum Halle (Saale)Halle (Saale)Deutschland
  5. 5.Klinik für Unfall‑, Hand- und Wiederherstellungschirurgie UniversitätsklinikumFriedrich Schiller Universität JenaJenaDeutschland

Personalised recommendations