Advertisement

Der Anaesthesist

, Volume 68, Issue 4, pp 194–201 | Cite as

Perioperative akute Nierenschädigung

  • M. Küllmar
  • M. MeerschEmail author
Leitthema
  • 1.3k Downloads

Zusammenfassung

Hintergrund

Die akute Nierenschädigung („acute kidney injury“, AKI) ist eine häufige Komplikation im perioperativen Bereich und geht mit einer erhöhten Morbidität und Letalität einher. Die AKI stellt einen unabhängigen Risikofaktor für ein verschlechtertes Outcome dar. Die Leitlinien der Kidney Disease: Improving Global Outcome (KDIGO) definieren die AKI anhand der Serum-Kreatinin-Konzentration und/oder der Urinausscheidung. Da es keine kausale Therapie gibt, kommen der frühen Detektierung und der frühzeitigen Implementierung präventiver Maßnahmen besondere Bedeutung zu.

Ziel der Arbeit

Diese Arbeit soll einen Überblick über das Erkrankungsbild der perioperativen AKI geben. Die Empfehlungen zu Diagnostik, Prävention und Therapie werden dargestellt.

Methoden

Anhand aktueller Literatur wird die verfügbare Evidenz zusammengefasst.

Ergebnisse

Neue renale Biomarker zeigen einen Nierenstress an und können frühzeitig eine AKI vorhersagen. Insbesondere die Implementierung der „KDIGO bundles“ (Diskontinuierung aller nephrotoxischen Medikamente, Optimierung des Volumenstatus und des Perfusionsdrucks, Erwägung eines erweiterten funktionellen hämodynamischen Monitorings, regelmäßige Kontrollen von Serum-Kreatinin-Konzentration und Urinausscheidung, Vermeidung von Hyperglykämien und Erwägung von Alternativen zu Kontrastmitteln) sowie die entfernte ischämische Präkonditionierung haben bei Hochrisikopatienten eine signifikante Reduktion der der AKI-Inzidenz erzielt.

Schlussfolgerung

Zur frühzeitigen Diagnose und zur Prävention der AKI sollten die Handlungsempfehlungen der KDIGO-Leitlinien umgesetzt werden. Hochrisikopatienten sollten frühzeitig detektiert werden, um unverzüglich präventive Maßnahmen implementieren zu können.

Schlüsselwörter

Akute Nierenschädigung Prävention Biomarker Entfernte ischämische Präkonditionierung KDIGO Bundles 

Perioperative acute kidney injury

Abstract

Background

Acute kidney injury (AKI) is a frequent complication in the perioperative period and is associated with a high morbidity and mortality. AKI is an independent risk factor for adverse outcome. The Kidney Disease: Improving Global Outcome (KDIGO) guidelines define AKI based on increases in serum creatinine and/or urinary output. Since there is no causal therapy available, early detection and timely implementation of preventive measures are of particular importance.

Objective

This article gives an overview of the disease picture of perioperative AKI. The recommendations on diagnostics, prevention and treatment are presented.

Methods

The available evidence is summarized based on the currently available literature.

Results

New renal biomarkers demonstrate kidney stress and are able to make an early prediction of the development of AKI. The implementation of the KDIGO bundles (discontinuation of all nephrotoxic medications, optimization of the volume status and perfusion pressure, consideration of an extended functional hemodynamic monitoring, close monitoring of serum creatinine concentration and urine output, avoidance of hyperglycemia and consideration of alternatives to radiocontrast agents) and remote ischemic preconditioning have shown a significant reduction in the incidence of AKI in high-risk patients.

Conclusion

For timely diagnosis and prevention of AKI the recommendations for action of the KDIGO guidelines should be implemented. High-risk patients should be detected early in the perioperative period in order to be able to initiate preemptive strategies in a timely manner.

Keywords

Acute kidney injury Prevention Biomarker Remote ischemic preconditioning KDIGO bundles 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Meersch hat Vortragshonorare für Astute, Fresenius Medical Care und Baxter erhalten. M. Küllmar gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Bampoe S, Odor PM, Dushianthan A et al (2017) Perioperative administration of buffered versus non-buffered crystalloid intravenous fluid to improve outcomes following adult surgical procedures. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD004089.pub3 CrossRefPubMedGoogle Scholar
  2. 2.
    Bellomo R, Kellum JA, Ronco C (2012) Acute kidney injury. Lancet 380:756–766CrossRefGoogle Scholar
  3. 3.
    Bolignano D, Lacquaniti A, Coppolino G et al (2009) Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol 4:337–344CrossRefGoogle Scholar
  4. 4.
    Bucaloiu ID, Kirchner HL, Norfolk ER et al (2012) Increased risk of death and de novo chronic kidney disease following reversible acute kidney injury. Kidney Int 81:477–485CrossRefGoogle Scholar
  5. 5.
    Carmichael P, Carmichael AR (2003) Acute renal failure in the surgical setting. Anz J Surg 73:144–153CrossRefGoogle Scholar
  6. 6.
    Futier E, Lefrant JY, Guinot PG et al (2017) Effect of individualized vs standard blood pressure management strategies on postoperative organ dysfunction among high-risk patients undergoing major surgery: a randomized clinical trial. JAMA 318:1346–1357CrossRefGoogle Scholar
  7. 7.
    Gameiro J, Fonseca JA, Neves M et al (2018) Acute kidney injury in major abdominal surgery: incidence, risk factors, pathogenesis and outcomes. Ann Intensive Care 8:22CrossRefGoogle Scholar
  8. 8.
    Gocze I, Jauch D, Gotz M et al (2018) Biomarker-guided intervention to prevent acute kidney injury after major surgery: the prospective randomized BigpAK study. Ann Surg 267:1013–1020CrossRefGoogle Scholar
  9. 9.
    Haase-Fielitz A, Haase M, Bellomo R et al (2017) Perioperative hemodynamic instability and fluid overload are associated with increasing acute kidney injury severity and worse outcome after cardiac surgery. Blood Purif 43:298–308CrossRefGoogle Scholar
  10. 10.
    Hausenloy DJ, Candilio L, Evans R et al (2015) Remote Ischemic preconditioning and outcomes of cardiac surgery. N Engl J Med 373:1408–1141CrossRefGoogle Scholar
  11. 11.
    Hoste EA, Bagshaw SM, Bellomo R et al (2015) Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med 41:1411–1423CrossRefGoogle Scholar
  12. 12.
    Kashani K, Al-Khafaji A, Ardiles T et al (2013) Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 17:R25CrossRefGoogle Scholar
  13. 13.
    KDIGO Board Members (2012) Kidney Int Suppl 2:3CrossRefGoogle Scholar
  14. 14.
    Kellum JA, Angus DC (2002) Patients are dying of acute renal failure. Crit Care Med 30:2156–2157CrossRefGoogle Scholar
  15. 15.
    Kottenberg E, Musiolik J, Thielmann M et al (2014) Interference of propofol with signal transducer and activator of transcription 5 activation and cardioprotection by remote ischemic preconditioning during coronary artery bypass grafting. J Thorac Cardiovasc Surg 147:376–382CrossRefGoogle Scholar
  16. 16.
    Mao H, Katz N, Ariyanon W et al (2013) Cardiac surgery-associated acute kidney injury. Cardiorenal Med 3:178–199CrossRefGoogle Scholar
  17. 17.
    Meersch M, Schmidt C, Hoffmeier A et al (2017) Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med 43:1551–1561CrossRefGoogle Scholar
  18. 18.
    Meersch M, Schmidt C, Van Aken H et al (2014) Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS ONE 9:e93460CrossRefGoogle Scholar
  19. 19.
    Mehta RH et al (2006) Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation 114(21):2208–2216CrossRefGoogle Scholar
  20. 20.
    Meybohm P, Bein B, Brosteanu O et al (2015) A Multicenter trial of remote Ischemic preconditioning for heart surgery. N Engl J Med 373:1397–1407CrossRefGoogle Scholar
  21. 21.
    Mutter TC, Ruth CA, Dart AB (2013) Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD007594.pub3 CrossRefPubMedGoogle Scholar
  22. 22.
    Myles PS, Bellomo R, Corcoran T et al (2018) Restrictive versus liberal fluid therapy for major abdominal surgery. N Engl J Med 378:2263–2274CrossRefGoogle Scholar
  23. 23.
    Nadim MK, Forni LG, Bihorac A et al (2018) Cardiac and vascular surgery-associated acute kidney injury: the 20th international consensus conference of the ADQI (acute disease quality initiative) group. J Am Heart Assoc.  https://doi.org/10.1161/JAHA.118.008834 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ney J, Hoffmann K, Meybohm P et al (2018) Remote Ischemic preconditioning does not affect the release of humoral factors in propofol-anesthetized cardiac surgery patients: a secondary analysis of the RIPheart study. Int J Mol Sci.  https://doi.org/10.1161/JAHA.118.008834 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pei H, Wu Y, Wei Y et al (2014) Remote ischemic preconditioning reduces perioperative cardiac and renal events in patients undergoing elective coronary intervention: a meta-analysis of 11 randomized trials. PLoS ONE 9:e115500CrossRefGoogle Scholar
  26. 26.
    Perel P, Roberts I, Ker K (2013) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD000567.pub6 CrossRefPubMedGoogle Scholar
  27. 27.
    Ronco C, Kellum JA, Haase M (2012) Subclinical AKI is still AKI. Crit Care 16:313CrossRefGoogle Scholar
  28. 28.
    Self WH, Semler MW, Wanderer JP et al (2018) Balanced crystalloids versus saline in noncritically ill adults. N Engl J Med 378:819–828CrossRefGoogle Scholar
  29. 29.
    Semler MW, Self WH, Wanderer JP et al (2018) Balanced crystalloids versus saline in critically ill adults. N Engl J Med 378:829–839CrossRefGoogle Scholar
  30. 30.
    Shiba A, Uchino S, Fujii T et al (2018) Association between Intraoperative oliguria and acute kidney injury after major noncardiac surgery. Anesth Analg 127:1229–1235CrossRefGoogle Scholar
  31. 31.
    Thakar CV et al (2005) A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol 16(1):162–168CrossRefGoogle Scholar
  32. 32.
    Uchino S, Kellum JA, Bellomo R et al (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294:813–818CrossRefGoogle Scholar
  33. 33.
    Vives M, Wijeysundera D, Marczin N et al (2014) Cardiac surgery-associated acute kidney injury. Interact Cardiovasc Thorac Surg 18:637–645CrossRefGoogle Scholar
  34. 34.
    Walsh M, Devereaux PJ, Garg AX et al (2013) Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology 119:507–515CrossRefGoogle Scholar
  35. 35.
    Walsh M, Garg AX, Devereaux PJ et al (2013) The association between perioperative hemoglobin and acute kidney injury in patients having noncardiacsurgery. Anesth Analg 117:924–931CrossRefGoogle Scholar
  36. 36.
    Weisbord SD, Gallgher M, Jneid H et al (2018) Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Engl J Med 378(7):603–614CrossRefGoogle Scholar
  37. 37.
    Wetz AJ, Richardt EM, Wand S et al (2015) Quantification of urinary TIMP-2 and IGFBP-7: an adequate diagnostic test to predict acute kidney injury after cardiac surgery? Crit Care 19:3. Wilhelm-Leen E, Montez-Rath ME, Chertow G (2017) Estimating the Risk of Radiocontrast-Associated Nephropathie. J Am Soc Nephrol 28(2):653–659Google Scholar
  38. 38.
    Wilhelm-Leen E, Montez-Rath ME, Chertow G (2017) Estimating the risk of radiocontrast-associated nephropathie. J Am Soc Nephrol 28(2):653–659CrossRefGoogle Scholar
  39. 39.
    Zarbock A, Kellum JA (2016) Remote Ischemic preconditioning and protection of the kidney—a novel therapeutic option. Crit Care Med 44:607–616CrossRefGoogle Scholar
  40. 40.
    Zarbock A, Schmidt C, Van Aken H et al (2015) Effect of remote ischemic preconditioning on kidney injury among high-risk patients undergoing cardiac surgery: a randomized clinical trial. JAMA 313:2133–2141CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik für Anästhesiologie, operative Intensivmedizin und SchmerztherapieUniversitätsklinikum MünsterMünsterDeutschland

Personalised recommendations