Advertisement

„Tiefe Narkose – schlechte Narkose?“

  • M.-T. GeorgiiEmail author
  • G. Schneider
Leitthema
  • 203 Downloads

Zusammenfassung

Neben tiefen Narkoseindexwerten wurden insbesondere Burst-Suppression-Muster und deren Zusammenhang mit postoperativem Delir und postoperativer Mortalität untersucht. Dreizehn der im Folgenden beschriebenen Studien aus dem letzten Jahrzehnt liefern Hinweise, dass dokumentierte tiefe Narkoseindizes oder Burst-Suppression-Muster das Risiko für entweder ein postoperatives kognitives Defizit oder die Mortalität erhöhen. Es handelt sich jedoch überwiegend um sekundäre Datenanalysen oder retrospektive Observationsstudien. Die erste prospektive Interventionsstudie zu „triple low“ konnte diesen Zusammenhang nicht nachweisen. Derzeit werden die ersten prospektiven Interventionsstudien zur Vermeidung exzessiver EEG-Suppression durchgeführt. Die Ergebnisse würden nicht nur die Formulierung evidenzbasierter Empfehlungen ermöglichen, sondern sollen auch Hinweise und Anhaltspunkte liefern, ob es sich bei den oben genannten Beobachtungen um einen kausalen Zusammenhang oder ein Epiphänomen handelt.

Schlüsselwörter

Allgemeinanästhesie Elektroenzephalographie „Burst Suppression“ Delir Mortalität 

Deep anesthesia, poorly tolerated anesthesia?

Abstract

Besides very low depth of anesthesia (DOA) index values, special intraoperative electroencephalography (EEG) patterns, such as burst suppression patterns and the correlation with postoperative delirium and mortality have been examined. Over the last decade the 13 studies described in this article yielded information that documented low DOA indices or burst suppression patterns increased the risk of either postoperative cognitive dysfunction or mortality; however, these were mainly secondary data analyses or retrospective observational studies. The first prospective interventional study regarding triple low could not confirm this correlation. Meanwhile, the first prospective interventional studies on avoidance of excessive EEG suppression are currently in progress. The results would not only enable the formulation of evidence-based recommendations but should also provide indicatíons and references as to whether the above mentioned observations can be explained by a causal association or an epiphenomenon.

Keywords

General anesthesia Electroencephalography Burst Suppression Delirium Mortality 

Notes

Danksagung

Die Autoren danken Dr. Matthias Kreuzer für die Diskussionen und Beiträge beim Erstellen dieses Manuskripts.

Einhaltung ethischer Richtlinien

Interessenkonflikt

M.-T. Georgii und G. Schneider geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Buhre W, Rossaint R (2003) Perioperative management and monitoring in anaesthesia. Lancet 362:1839–1846CrossRefGoogle Scholar
  2. 2.
    Monk TG, Saini V, Weldon BC et al (2005) Anesthetic management and one-year mortality after noncardiac surgery. Anesth Analg 100:4–10CrossRefGoogle Scholar
  3. 3.
    Brown EN, Lydic R, Schiff ND (2010) General anesthesia, sleep, and coma. N Engl J Med 363:2638–2650CrossRefGoogle Scholar
  4. 4.
    Viertiö-Oja H, Maja V, Särkelä M et al (2004) Description of the Entropy™ algorithm as applied in the Datex-Ohmeda S/5™ Entropy Module. Acta Anaesthesiol Scand 48:154–161CrossRefGoogle Scholar
  5. 5.
    Bruhn J, Bouillon TW, Shafer SL (2000) Bispectral index (BIS) and burst suppression: revealing a part of the BIS algorithm. J Clin Monit Comput 16:593–596CrossRefGoogle Scholar
  6. 6.
    Fleischmann A, Pilge S, Kiel T et al (2018) Substance-specific differences in human electroencephalographic burst suppression patterns. Front Hum Neurosci.  https://doi.org/10.3389/fnhum.2018.00368 Google Scholar
  7. 7.
    Drexler B, Grasshoff C (2012) Ist tiefe Narkose gefährlich? Is deep anesthesia dangerous? Anaesthesist 61:678–685CrossRefGoogle Scholar
  8. 8.
    Pompei P, Foreman M, Rudberg MA et al (1994) Delirium in hospitalized older persons: outcomes and predictors. J Am Geriatr Soc 42:809–815CrossRefGoogle Scholar
  9. 9.
    Lin S‑M, Liu C‑Y, Wang C‑H et al (2004) The impact of delirium on the survival of mechanically ventilated patients. Crit Care Med 32:2254–2259CrossRefGoogle Scholar
  10. 10.
    Pisani MA, Kong SYJ, Kasl SV et al (2009) Days of delirium are associated with 1‑year mortality in an older intensive care unit population. Am J Respir Crit Care Med 180:1092–1097CrossRefGoogle Scholar
  11. 11.
    Salluh JI, Wang H, Schneider EB et al (2015) Outcome of delirium in critically ill patients: systematic review and meta-analysis. BMJ 350:h2538CrossRefGoogle Scholar
  12. 12.
    Ely EW, Shintani A, Truman B et al (2004) Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 291:1753–1762CrossRefGoogle Scholar
  13. 13.
    Pandharipande PP, Girard TD, Jackson JC et al (2013) Long-term cognitive impairment after critical illness. N Engl J Med 369:1306–1316CrossRefGoogle Scholar
  14. 14.
    Tomasi CD, Grandi C, Salluh J et al (2012) Comparison of CAM-ICU and ICDSC for the detection of delirium in critically ill patients focusing on relevant clinical outcomes. J Crit Care 27:212–217CrossRefGoogle Scholar
  15. 15.
    Salluh JI, Soares M, Teles JM et al (2010) Delirium epidemiology in critical care (DECCA): an international study. Crit Care 14:R210CrossRefGoogle Scholar
  16. 16.
    Van Den Boogaard M, Schoonhoven L, Van Der Hoeven JG et al (2012) Incidence and short-term consequences of delirium in critically ill patients: a prospective observational cohort study. Int J Nurs Stud 49:775–783CrossRefGoogle Scholar
  17. 17.
    Witlox J, Eurelings LS, De Jonghe JF et al (2010) Delirium in elderly patients and the risk of postdischarge mortality, institutionalization, and dementia: a meta-analysis. JAMA 304:443–451CrossRefGoogle Scholar
  18. 18.
    Kertai MD, Pal N, Palanca BJ et al (2010) Association of perioperative risk factors and cumulative duration of low bispectral index with intermediate-term mortality after cardiac surgery in the B‑Unaware Trial. Anesthesiology 112:1116–1127CrossRefGoogle Scholar
  19. 19.
    Kertai MD, Palanca BJ, Pal N et al (2011) Bispectral index monitoring, duration of bispectral index below 45, patient risk factors, and intermediate-term mortality after noncardiac surgery in the B‑Unaware Trial. Anesthesiology 114:545–556CrossRefGoogle Scholar
  20. 20.
    Sessler DI, Sigl JC, Kelley SD et al (2012) Hospital stay and mortality are increased in patients having a ”triple low“ of low blood pressure, low bispectral index, and low minimum alveolar concentration of volatile anesthesia. Anesthesiology 116:1195–1203CrossRefGoogle Scholar
  21. 21.
    Short TG, Leslie K, Campbell D et al (2014) A pilot study for a prospective, randomized, double-blind trial of the influence of anesthetic depth on long-term outcome. Anesth Analg 118:981–986CrossRefGoogle Scholar
  22. 22.
    Short TG, Leslie K, Chan MT et al (2015) Rationale and design of the balanced anesthesia study: a prospective randomized clinical trial of two levels of anesthetic depth on patient outcome after major surgery. Anesth Analg 121:357–365CrossRefGoogle Scholar
  23. 23.
    Willingham MD, Karren E, Shanks AM et al (2015) Concurrence of intraoperative hypotension, low minimum alveolar concentration, and low bispectral index is associated with postoperative death. Anesthesiology 123:775–785CrossRefGoogle Scholar
  24. 24.
    Sessler DI, Turan A, Stapelfeldt WH et al (2019) Triple-low alerts do not reduce mortalityA real-time randomized trial. Anesthesiology 130:72–82CrossRefGoogle Scholar
  25. 25.
    Ziegeler S, Buchinger H, Bialas P et al (2013) Impact of depth of hypnosis on immediate postoperative cognitive function: a randomised trial. Eur J Anaesthesiol 30:641–642CrossRefGoogle Scholar
  26. 26.
    Dixon RA, Thornton JA (1973) Tests of recovery from anaesthesia and sedation: Intravenous diazepam in dentistry. Br J Anaesth 45:207–215CrossRefGoogle Scholar
  27. 27.
    Wilhelm W, Schlaich N, Harrer J, Kleinschmidt S, Müller M, Larsen R (2001) Recovery and neurological examination after remifentanil–desflurane or fentanyl–desflurane anaesthesia for carotid artery surgery. Brit J Anaesth 86(1):44–49CrossRefGoogle Scholar
  28. 28.
    Rampil IJ (1998) A primer for EEG signal processing in anesthesia. Anesthesiology 89:980–1002CrossRefGoogle Scholar
  29. 29.
    Liang Z, Wang Y, Ren Y et al (2014) Detection of burst suppression patterns in EEG using recurrence rate. Sci World J.  https://doi.org/10.1155/2014/295070 Google Scholar
  30. 30.
    Watson PL, Shintani AK, Tyson R et al (2008) Presence of electroencephalogram burst suppression in sedated, critically ill patients is associated with increased mortality. Crit Care Med 36:3171–3177CrossRefGoogle Scholar
  31. 31.
    Andresen JM, Girard TD, Pandharipande PP et al (2014) Burst suppression on processed electroencephalography as a predictor of postcoma delirium in mechanically ventilated ICU patients. Crit Care Med 42:2244–2251CrossRefGoogle Scholar
  32. 32.
    Radtke FM, Franck M, Lendner J et al (2013) Monitoring depth of anaesthesia in a randomized trial decreases the rate of postoperative delirium but not postoperative cognitive dysfunction. Br J Anaesth 110(Suppl 1):i98–i105CrossRefGoogle Scholar
  33. 33.
    Chan MT, Cheng BC, Lee TM et al (2013) BIS-guided anesthesia decreases postoperative delirium and cognitive decline. J Neurosurg Anesthesiol 25:33–42CrossRefGoogle Scholar
  34. 34.
    Soehle M, Dittmann A, Ellerkmann RK et al (2015) Intraoperative burst suppression is associated with postoperative delirium following cardiac surgery: a prospective, observational study. BMC Anesthesiol 15:61CrossRefGoogle Scholar
  35. 35.
    Fritz BA, Kalarickal PL, Maybrier HR et al (2016) Intraoperative Electroencephalogram Suppression Predicts Postoperative Delirium. Anesth Analg 122:234–242CrossRefGoogle Scholar
  36. 36.
    Wildes TS, Mickle AM, Abdallah AB et al (2019) Effect of electroencephalography-guided anesthetic administration on postoperative delirium among older adults undergoing major surgery: the ENGAGES randomized clinical trial. JAMA 321:473–483CrossRefGoogle Scholar
  37. 37.
    Willingham M, Abdallah BA, Gradwohl S et al (2014) Association between intraoperative electroencephalographic suppression and postoperative mortality. Br J Anaesth 113:1001–1008CrossRefGoogle Scholar
  38. 38.
    Whitlock EL, Torres BA, Lin N et al (2014) Postoperative delirium in a substudy of cardiothoracic surgical patients in the BAG-RECALL clinical trial. Anesth Analg 118:809CrossRefGoogle Scholar
  39. 39.
    Avidan MS, Jacobsohn E, Glick D et al (2011) Prevention of intraoperative awareness in a high-risk surgical population. N Engl J Med 365:591–600CrossRefGoogle Scholar
  40. 40.
    Purdon P, Pavone K, Akeju O et al (2015) The ageing brain: age-dependent changes in the electroencephalogram during propofol and sevoflurane general anaesthesia. British Journal of Anaesthesia 115:i46–i57CrossRefGoogle Scholar
  41. 41.
    Litaker D, Locala J, Franco K et al (2001) Preoperative risk factors for postoperative delirium. Gen Hosp Psychiatry 23:84–89CrossRefGoogle Scholar
  42. 42.
    Ching S, Purdon PL, Vijayan S et al (2012) A neurophysiological-metabolic model for burst suppression. Proc Natl Acad Sci USA 109:3095–3100CrossRefGoogle Scholar
  43. 43.
    Aldecoa C, Bettelli G, Bilotta F et al (2017) European Society of Anaesthesiology evidence-based and consensus-based guideline on postoperative delirium. Eur J Anaesthesiol 34:192–214CrossRefGoogle Scholar
  44. 44.
    S3-Leitlinie (2015) S3-Leitlinie Analgesie, Sedierung und Delirmanagement in der Intensivmedizin.Google Scholar
  45. 45.
    Punjasawadwong Y, Chau-In W, Laopaiboon M et al (2018) Processed electroencephalogram and evoked potential techniques for amelioration of postoperative delirium and cognitive dysfunction following non-cardiac and non-neurosurgical procedures in adults. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd011283.pub2 Google Scholar
  46. 46.
    Hart S, Buchannan C, Sleigh J (2009) A failure of M‑Entropy [TM] to correctly detect burst suppression leading to sevoflurane overdosage. Anaesth Intensive Care Med 37:1002–1005CrossRefGoogle Scholar
  47. 47.
    Hagihira S, Okitsu K, Kawaguchi M (2004) Unusually low bispectral index values during emergence from anesthesia. Anesth Analg 98:1036–1038CrossRefGoogle Scholar
  48. 48.
    Muhlhofer W, Zak R, Kamal T et al (2017) Burst-suppression ratio underestimates absolute duration of electroencephalogram suppression compared with visual analysis of intraoperative electroencephalogram. Br J Anaesth 118:755–761CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinikum rechts der Isar – Klinik für Anästhesiologie und IntensivmedizinFakultät für Medizin, Technische Universität MünchenMünchenDeutschland

Personalised recommendations