Efficacy of midazolam addition to local anesthetic in peribulbar block

Randomized controlled trial
  • M. IbrahimEmail author
  • E. Gomaa



Peribulbar block is considered a safe option for patients undergoing cataract surgery. The limited duration of regional eye blocks was shown to be the main problem. The objective of this study was to evaluate the effects of adjuvant midazolam (in two concentrations) to lidocaine in the peribulbar block.

Material and methods

This study included 90 adult patients aged 40–70 years undergoing cataract surgery. Each patient was appointed to one of three groups. Group C received a single injection of a peribulbar block using a combination of lidocaine 2% and hyaluronidase 15 IU/ml, group M1 received a combination of lidocaine 2%, hyaluronidase 15 IU/ml plus midazolam 50 µg/ml and group M2 received lidocaine 2%, hyaluronidase 15 IU/ml plus midazolam 100 µg/ml.


The quality of the peribulbar block showed significant improvement among groups by one-way ANOVA (p = 0.002). The mean onset time of the sensory block was significantly shorter in the M2 and M1 groups (1.66 min and 2.17 min, respectively) compared to the control group C (2.52 min), while the onset of lid and globe akinesia lacked significance between the three groups (p = 0.23 and 0.06, respectively). Significance in mean values was found between the control (C) and M2 groups regarding orbicularis oculi function, digital spear pressure, topical anesthetic sting and the total score (P-values = 0.004, 0.016, 0.033 and 0.001, respectively). The duration of lid akinesia and sensory anesthesia were significantly different between the three groups (P = 0.048 and P<0.001, respectively) whereas the duration of globe akinesia was insignificant (P = 0.432).


Addition of midazolam to local anesthetic significantly improved the quality of peribulbar block, hastened the onset of sensory anesthesia, lid and globe akinesia and increased the duration of analgesia without notable side effects.


Adjuvant  Ocular surgery  Midazolam Post-operative Pain relief 

Wirksamkeit von Midazolam zusätzlich zu Lokalanästhetika bei Peribulbärblock

Randomisierte kontrollierte Studie



Der Peribulbärblock ist eine sichere Alternative für Patienten, die sich einer Kataraktoperation unterziehen müssen. Ziel der Studie war die Untersuchung des Effektes von Midazolam als Adjuvans bei einer Peribulbärblockade mit Lidocain.

Material und Methoden

Diese Studie schloss 90 erwachsene Patienten im Alter von 40–70 Jahren ein. Jeder Patient wurde einer von 3 Gruppen zugeordnet: Gruppe C erhielt eine einzelne Injektion eines Peribulbärblocks unter Verwendung einer Mischung aus Lidocain 2 %, Hyaluronidase 15 IU/ml, Gruppe M1 erhielt eine Mischung aus Lidocain 2 %, Hyaluronidase 15 IU/ml plus Midazolam 50 ug/ml und Gruppe M2 erhielt Lidocain 2 %, Hyaluronidase 15 IU/ml plus Midazolam 100 ug/ml.


Midazolam führte zu einer signifikanten Verbesserung der Qualität der Peribulbärblockade zwischen den Gruppen in der einfachen Varianzanalyse (ANOVA; p = 0,002). Die mittlere Anschlagszeit der sensorischen Blockade nahm in den Gruppen M2 und M1 signifikant ab (1,66 bzw. 2,17) im Vergleich zur Kontrollgruppe C (2,52 min), während der Beginn einer Lid- oder Globusakinesie in den 3 Gruppen keine Signifikanz zeigte (p = 0,23 bzw. 0,06). Orbicularisfunktion, digitaler Speerdruck, Brennen bei topischer Lokalanästhetikaapplikation und Gesamtpunktzahl waren in der M2-Gruppe im Vergleich zur Kontrollgruppe (C) signifikant reduziert (p-Werte = 0,004, 0,016, 0,033 bzw. 0,001). Die Dauer der Lid-Akinesie und die sensorische Anästhesie waren in den Gruppen M1 und M2 signifikant verlängert (p = 0,048 bzw. 0,001).


Midazolam als Adjuvans zu Lidocain verbessert die Qualität des Peribulbärblocks, verkürzt die Anschlagszeit der sensorischen Blockade, Lid- und Globusakinesie und verlängert die Analgesiedauer ohne relevante Nebenwirkungen.


Adjuvans Augenoperation Midazolam Postoperativ Schmerzlinderung 



This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical guidelines

Conflict of interest

M. Ibrahim and E. Gomaa declare that they have no competing interests.

All procedures reported in this article were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all subjects described in this article or their legal guardians.


  1. 1.
    Bellucci R (1999) Anesthesia for cataract surgery. Curr Opin Ophthalmol 10:36–41CrossRefGoogle Scholar
  2. 2.
    Bedi A, Carabine U (1999) Peribulbar anesthesia: a double-blind comparison of three local anesthetic solutions. Anesthesia 54:67–71CrossRefGoogle Scholar
  3. 3.
    Friedman D, Bass E, Lubomski L, Fleisher L, Kempen J, Magaziner J et al (2001) Synthesis of the literature on the effectiveness of regional anesthesia for cataract surgery. Ophthalmology 108:519–529CrossRefGoogle Scholar
  4. 4.
    Godarzi M, Beyranvand S, Arbabi S, Sharoughi M, Mohtaram R, Soltani AE (2011) Comparing the effect of using atracurium and cisatracurium as adjuvant agents to the local anesthetic substance on peribulbar induced akinesia. Acta Med Iran 49:509–512PubMedGoogle Scholar
  5. 5.
    Kucukyavuz Z, Arici MK (2002) Effects of atracurium added to local anesthetics on akinesia in peribulbar block. Reg Anesth Pain Med 27:487–490CrossRefGoogle Scholar
  6. 6.
    Mahmoud MS, Abd Al Alim AA, Hefni AF (2013) Dexamethasone bupivacaine versus bupivacaine for peribulbar block in posterior segment eye surgery. Egypt J Anesth 29:407–411CrossRefGoogle Scholar
  7. 7.
    Aissaoui Y, Belyamani L, Kamili ND (2010) Effect of the addition of rocuronium to local anesthetics for peribulbar block. Acta Anaesthesiol Belg 61:51–54PubMedGoogle Scholar
  8. 8.
    Reves JG, Fragen RJ, Vinik HR, Greenblatt DJ (1985) Midazolam: pharmacology and uses. Anesthesiology 62:310–324CrossRefGoogle Scholar
  9. 9.
    Goodchild CS, Guo Z, Musgreave A, Gent JP (1996) Antinociception by intrathecal midazolam involves endogenous neurotransmitters acting at spinal cord delta opioid receptors. Br J Anesth 77:758–763CrossRefGoogle Scholar
  10. 10.
    Vohra SB et al (2000) Altered Globe dimensions of axial myopia as risk factors for penetrating occular injury during peribulbar anaesthesia. Br J Anaesth 85(2):242–245CrossRefGoogle Scholar
  11. 11.
    Rizzo L, Marini M, Rosati C, Calamai I, Nesi M, Salvini R et al (2005) Peribulbar anesthesia: a percutaneous single injection technique with a small volume of anesthetic. Anesth Analg 100:94–96CrossRefGoogle Scholar
  12. 12.
    Cehajic-Kapetanovic J, Bishop PN, Liyanage S, King T, Muldoon M, Wearne IM (2010) A novel ocular anesthetic scoring system, OASS, tool to measure both motor and sensory function following local anesthesia. Br J Ophthalmol 94:28–32CrossRefGoogle Scholar
  13. 13.
    Ramsay M, Savege T, Simpson B, Goodwin R (1974) Controlled sedation with alpaxalone-alphadolone. BMJ 2:656–659CrossRefGoogle Scholar
  14. 14.
    Hjermstad MJ, Fayers PM, Haugen DF, Caraceni A, Hanks GW, Loge JH et al (2011) Studies comparing numerical rating scales, verbal rating scales, and visual analogue scales for assessment of pain intensity in adults: a systematic literature review. J Pain Symptom Manage 41:1073–1093CrossRefGoogle Scholar
  15. 15.
    Youssef MI, Girgis K, Soaida SM (2014) Clonidine versus fentanyl as adjuvants to bupivacaine in peribulbar anesthesia. Egypt J Anaesth 30:267–272CrossRefGoogle Scholar
  16. 16.
    Kim MH, Lee YM (2001) Intrathecal midazolam increases the analgesic effects of spinal blockade with bupivacaine in patients undergoing haemorrhoidectomy. Br J Anaesth 86:77–79CrossRefGoogle Scholar
  17. 17.
    Shah FR, Halbe AR, Panchal ID, Goodchild CS (2003) Improvement in postoperative pain relief by the addition of midazolam to an intrathecal injection of buprenorphine and bupivacaine. Eur J Anaesthesiol 20:904–910CrossRefGoogle Scholar
  18. 18.
    Nishiyama T (1995) The post-operative analgesic action of midazolam following epidural administration. Eur J Anaesthesiol 12:369–374PubMedGoogle Scholar
  19. 19.
    Naguib M, el Gammal M, Elhattab YS, Seraj M (1995) Midazolam for caudal analgesia in children: comparison with caudal bupivacaine. Can J Anaesth 42:758–764CrossRefGoogle Scholar
  20. 20.
    Müller H, Gerlach H, Boldt J, Börner U, Hild P, Oehler KU, Zierski J, Hempelmann G (1986) Spasticity treatment with spinal morphine or midazolam. In vitro experiments, animal studies and clinical studies on compatibility and effectiveness. Anaesthesist 35:306–316PubMedGoogle Scholar
  21. 21.
    Swain A, Nag DA, Sahu S, Samaddar DP (2017) Adjuvants to local anesthetics: current understanding and future trends. World J Clin Cases 5(8):307–323CrossRefGoogle Scholar
  22. 22.
    Prochazka J (2006) 775 intrathecal midazolam as an analgesic-10 years’ experience. Eur J Pain 10:S202CrossRefGoogle Scholar
  23. 23.
    Gupta A, Prakash S, Deshpande S, Kale KS (2008) The effect of intrathecal midazolam 2.5 mg with bupivacaine on postoperative pain relief in patients undergoing orthopaedic surgery. J Clin Anaesth Pharmacol 24:189–192Google Scholar
  24. 24.
    Mahajan R, Batra YK, Grover VK, Kajal J (2001) A comparative study of caudal bupivacaine and midazolam-bupivacaine mixture for post-operative analgesia in children undergoing genitourinary surgery. Int J Clin Pharmacol Ther 39:116–120CrossRefGoogle Scholar
  25. 25.
    Sen A, Rudra A, Sarkar SK, Biswas B (2001) Intrathecal midazolam for postoperative pain relief in caesarean section delivery. J Indian Med Assoc 99:683–684, 686PubMedGoogle Scholar
  26. 26.
    Bharti N, Madan R, Mohanty PR, Kaul HL (2003) Intrathecal midazolam added to bupivacaine improves the duration and quality of spinal anaesthesia. Acta Anaesthesiol Scand 47:1101–1105CrossRefGoogle Scholar
  27. 27.
    Brown DA, Marsh S (1978) Axonal GABA-receptors in mammalian peripheral nerve trunks. Brain Res 156:187–191CrossRefGoogle Scholar
  28. 28.
    Bhisitkul RB, Villa JE, Kocsis JD (1987) Axonal GABA receptors are selectively present on normal and regenerated sensory fibers in rat peripheral nerves. Exp Brain Res 66:659–663CrossRefGoogle Scholar
  29. 29.
    Cairns BE, Sessle BJ, Hu JW (1999) Activation of peripheral GABAA receptors inhibits temporomandibular jointevoked jaw muscle activity. J Neurophysiol 81:1966–1969CrossRefGoogle Scholar
  30. 30.
    Jarbo K, Batra YK, Panda NB (2005) Brachial plexus block with midazolam and bupivacaine improves analgesia. Can J Anaesth 52(8):822–826CrossRefGoogle Scholar
  31. 31.
    Edwards M, Serrao JM, Gent JP, Goodchild CS (1990) On the mechanism by which midazolam causes spinally mediated analgesia. Anesthesiology 73:273–277CrossRefGoogle Scholar
  32. 32.
    Nishiyama T, Yokoyama T, Hanaoka K (1998) Midazolam improves postoperative epidural analgesia with continuous infusion of local anaesthetics. Can J Anaesth 45:551–555CrossRefGoogle Scholar
  33. 33.
    Shadangi BK, Garg R, Pandey R, Das T (2011) Effects of intrathecal midazolam in spinal anaesthesia: a prospective randomised case control study. Singapore Med J 52(6):432–435PubMedGoogle Scholar
  34. 34.
    de Jong RH, Wagman IH (1963) Physiological mechanisms of peripheral nerve block by local anesthetics. Anesthesiology 24:684–727CrossRefGoogle Scholar
  35. 35.
    Tucker AP, Lai C, Nadeson R, Goodchild CS (2004) Intrathecal midazolam I: a cohort study investigating safety. Anesth Analg 98:1512–1520CrossRefGoogle Scholar
  36. 36.
    Prakash S, Joshi N, Gogia AR, Prakash S, Singh R (2006) Analgesic efficacy of two doses of intrathecal midazolam with bupivacaine in patients undergoing cesarean delivery. Reg Anesth Pain Med 31:221–226CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Anesthesiology, Faculty of MedicineZagazig UniversityZagazigEgypt
  2. 2.Al Jedaani Hospital - AL Safa Dist.JeddahSaudi Arabia

Personalised recommendations