Advertisement

Der Anaesthesist

, Volume 67, Issue 10, pp 780–789 | Cite as

Der zentrale Venendruck in der Leberchirurgie

Ein primäres Therapieziel oder ein hämodynamischer Mosaikstein?
  • C. R. Behem
  • M. F. Gräßler
  • C. J. C. Trepte
Allgemeinanästhesie
  • 557 Downloads

Zusammenfassung

Der zentrale Venendruck (ZVD) gilt als wichtiger Parameter des anästhesiologischen Managements in der Leberchirurgie. Zur Reduktion des Blutverlustes bei Leberresektionen wird häufig eine niedriger Zielwert des ZVD propagiert. In aktuellen Metaanalysen konnte zwar ein Zusammenhang eines niedrigen ZVD mit einer Reduktion des Blutverlustes gezeigt werden, allerdings weisen die zugrunde liegenden Studien methodologische Schwächen auf und Vorteile bezüglich Morbidität und Letalität lassen sich kaum nachweisen. Die Messung des ZVD selbst ist mit zahlreichen Limitationen und Einflussfaktoren verbunden, und die Maßnahmen zur Senkung des ZVD sind in Bezug auf die hepatische Hämodynamik nur unzureichend untersucht worden. Die Definition eines allgemeingültigen Zielbereichs für den ZVD ist infrage zu stellen. Das primäre Ziel ist die Aufrechterhaltung eines adäquaten Sauerstoffangebots und einer Euvolämie. Der ZVD sollte hierbei als Mosaikstein des hämodynamischen Managements betrachtet werden.

Schlüsselwörter

ZVD Leberchirurgie Hepatobiliäre Chirurgie Hämodynamik Monitoring 

Abkürzungen

CVP

„central venous pressure“

ERAS

„enhanced recovery after surgery“

HABR

„hepatic artery buffer response“

HCC

Hepatozelluläres Karzinom

HZV

Herzzeitvolumen

LCVP

„low-central-venous-pressure“

MCFP

„mean circulatory filling pressure“

PEEP

„positive end-expiratory pressure“

ZVD

Zentraler Venendruck

Central venous pressure in liver surgery

A primary therapeutic goal or a hemodynamic tessera?

Abstract

Central venous pressure (CVP) is deemed to be an important parameter of anesthesia management in liver surgery. To reduce blood loss during liver resections, a low target value of CVP is often propagated. Although current meta-analyses have shown a connection between low CVP and a reduction in blood loss, the underlying studies show methodological weaknesses and advantages with respect to morbidity and mortality can hardly be proven. The measurement of the CVP itself is associated with numerous limitations and influencing factors and the measures to reduce the CVP have been insufficiently investigated with respect to hepatic hemodynamics. The definition of a generally valid target area for the CVP must be called into question. The primary objective is to maintain adequate oxygen supply and euvolemia. The CVP should be regarded as a mosaic stone of hemodynamic management.

Keywords

CVP Liver surgery Hepatobiliary surgery Hemodynamics Monitoring 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C.R. Behem, M.F. Gräßler und C.J.C. Trepte geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Hughes MJ, Ventham NT, Harrison EM, Wigmore SJ (2015) Central venous pressure and liver resection: a systematic review and meta-analysis. HPB (Oxford) 17:863–871CrossRefGoogle Scholar
  2. 2.
    Katz SC, Shia J, Liau KH et al (2009) Operative blood loss independently predicts recurrence and survival after resection of hepatocellular carcinoma. Ann Surg 249:617–623PubMedCrossRefGoogle Scholar
  3. 3.
    Yang T, Zhang J, Lu JH, Yang GS, Wu MC, Yu WF (2011) Risk factors influencing postoperative outcomes of major hepatic resection of hepatocellular carcinoma for patients with underlying liver diseases. World J Surg 35:2073–2082PubMedCrossRefGoogle Scholar
  4. 4.
    Truong JL, Cyr DP, Lam-McCulloch J, Cleary SP, Karanicolas PJ (2014) Consensus and controversy in hepatic surgery: a survey of Canadian surgeons. J Surg Oncol 110:947–951PubMedCrossRefGoogle Scholar
  5. 5.
    Melloul E, Hubner M, Scott M et al (2016) Guidelines for perioperative care for liver surgery: enhanced recovery after surgery (ERAS) society recommendations. World J Surg 40:2425–2440PubMedCrossRefGoogle Scholar
  6. 6.
    Li Z, Sun YM, Wu FX, Yang LQ, Lu ZJ, Yu WF (2014) Controlled low central venous pressure reduces blood loss and transfusion requirements in hepatectomy. World J Gastroenterol 20:303–309PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Moggia E, Rouse B, Simillis C et al (2016) Methods to decrease blood loss during liver resection: a network meta-analysis. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD010683.pub3 PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang XL, Wang WJ, Wang WJ, Cao N (2015) Effectiveness and safety of controlled venous pressure in liver surgery: a systematic review and network meta-analysis. Biomed Res Int 2015:290234PubMedPubMedCentralGoogle Scholar
  9. 9.
    Melendez JA, Arslan V, Fischer ME et al (1998) Perioperative outcomes of major hepatic resections under low central venous pressure anesthesia: blood loss, blood transfusion, and the risk of postoperative renal dysfunction. J Am Coll Surg 187:620–625PubMedCrossRefGoogle Scholar
  10. 10.
    Rees M, Plant G, Wells J, Bygrave S (1996) One hundred and fifty hepatic resections: evolution of technique towards bloodless surgery. Br J Surg 83:1526–1529PubMedCrossRefGoogle Scholar
  11. 11.
    Wang WD, Liang LJ, Huang XQ, Yin XY (2006) Low central venous pressure reduces blood loss in hepatectomy. World J Gastroenterol 12:935–939PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Soonawalla ZF, Stratopoulos C, Stoneham M, Wilkinson D, Britton BJ, Friend PJ (2008) Role of the reverse-Trendelenberg patient position in maintaining low-CVP anaesthesia during liver resections. Langenbecks Arch Surg 393:195–198PubMedCrossRefGoogle Scholar
  13. 13.
    Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA (2011) Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med 39:259–265PubMedCrossRefGoogle Scholar
  14. 14.
    Marik PE, Baram M, Vahid B (2008) Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134:172–178PubMedCrossRefGoogle Scholar
  15. 15.
    Ytrebo LM (2011) Stop filling patients against central venous pressure, please! Crit Care Med 39:396–397PubMedCrossRefGoogle Scholar
  16. 16.
    Magder S (2006) Central venous pressure monitoring. Curr Opin Crit Care 12:219–227PubMedCrossRefGoogle Scholar
  17. 17.
    Magder S (2006) Central venous pressure: a useful but not so simple measurement. Crit Care Med 34:2224–2227PubMedCrossRefGoogle Scholar
  18. 18.
    Schummer W (2009) Central venous pressure. Validity, informative value and correct measurement. Anaesthesist 58:499–505PubMedCrossRefGoogle Scholar
  19. 19.
    Ukere A, Meisner S, Greiwe G et al (2016) The influence of PEEP and positioning on central venous pressure and venous hepatic hemodynamics in patients undergoing liver resection. J Clin Monit Comput.  https://doi.org/10.1007/s10877-016-9970-1 PubMedCrossRefGoogle Scholar
  20. 20.
    Figg KK, Nemergut EC (2009) Error in central venous pressure measurement. Anesth Analg 108:1209–1211PubMedCrossRefGoogle Scholar
  21. 21.
    Giordano C, Deitte LA, Gravenstein N, Rice MJ (2010) What is the preferred central venous pressure zero reference for hepatic resection? Anesth Analg 111:660–664PubMedCrossRefGoogle Scholar
  22. 22.
    Johnson M, Mannar R, Wu AV (1998) Correlation between blood loss and inferior vena caval pressure during liver resection. Br J Surg 85:188–190PubMedCrossRefGoogle Scholar
  23. 23.
    Palmon SC, Moore LE, Lundberg J, Toung T (1997) Venous air embolism: a review. J Clin Anesth 9:251–257PubMedCrossRefGoogle Scholar
  24. 24.
    Lee SY, Choi BI, Kim JS, Park KS (2002) Paradoxical air embolism during hepatic resection. Br J Anaesth 88:136–138PubMedCrossRefGoogle Scholar
  25. 25.
    Bickley LS, Szilagyi PG, Bates B (2009) Bates’ guide to physical examination and history taking, 10. Aufl. Lippincott Williams & Wilkins, Philadelphia, PA: Wolters Kluwer HealthGoogle Scholar
  26. 26.
    Pinsky MR, Payen D (2005) Functional Hemodynamic Monitoring. Update in intensive care and emergency medicine. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  27. 27.
    de Boer MT, Molenaar IQ, Porte RJ (2007) Impact of blood loss on outcome after liver resection. Dig Surg 24:259–264PubMedCrossRefGoogle Scholar
  28. 28.
    Poon RT, Fan ST, Lo CM et al (2004) Improving perioperative outcome expands the role of hepatectomy in management of benign and malignant hepatobiliary diseases: analysis of 1222 consecutive patients from a prospective database. Ann Surg 240:698–708PubMedPubMedCentralGoogle Scholar
  29. 29.
    Stümpfle R, RIga A, Deshpande R, Mudan SS, Baikady RR (2009) Anaesthesia for metastatic liver resection surgery. Curr Anesth Crit Care 20:3–7CrossRefGoogle Scholar
  30. 30.
    Jones RM, Moulton CE, Hardy KJ (1998) Central venous pressure and its effect on blood loss during liver resection. Br J Surg 85:1058–1060PubMedCrossRefGoogle Scholar
  31. 31.
    Kim YK, Chin JH, Kang SJ et al (2009) Association between central venous pressure and blood loss during hepatic resection in 984 living donors. Acta Anaesthesiol Scand 53:601–606PubMedCrossRefGoogle Scholar
  32. 32.
    Chhibber A, Dziak J, Kolano J, Norton JR, Lustik S (2007) Anesthesia care for adult live donor hepatectomy: our experiences with 100 cases. Liver Transplant 13:537–542CrossRefGoogle Scholar
  33. 33.
    Gurusamy KS, Li J, Vaughan J, Sharma D, Davidson BR (2012) Cardiopulmonary interventions to decrease blood loss and blood transfusion requirements for liver resection. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD007338.pub3 PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Liu Y, Cai M, Duan S et al (2008) Effect of controlled low central venous pressure on renal function in major liver resection. Chinese-German J Clin Oncol 7(1):7–9CrossRefGoogle Scholar
  35. 35.
    Liu HZ, Zhou QL, Wang XH et al (2005) Application of low central venous pressure in liver resection. Zhonghua Gandan Waike Zazhi 11:461–463Google Scholar
  36. 36.
    El-Kharboutly WS, El-Wahab MA (2004) The role of adoption of low central venous pressure in hepatic resection with pringle manoeuvre in reducing blood loss and improving operative outcome. Egyp J Anaesth 20:369–376Google Scholar
  37. 37.
    Niemann CU, Feiner J, Behrends M, Eilers H, Ascher NL, Roberts JP (2007) Central venous pressure monitoring during living right donor hepatectomy. Liver Transpl 13:266–271PubMedCrossRefGoogle Scholar
  38. 38.
    Wax DB, Zerillo J, Tabrizian P et al (2016) A retrospective analysis of liver resection performed without central venous pressure monitoring. Eur J Surg Oncol 42:1608–1613PubMedCrossRefGoogle Scholar
  39. 39.
    Schroeder RA, Collins BH, Tuttle-Newhall E et al (2004) Intraoperative fluid management during orthotopic liver transplantation. J Cardiothorac Vasc Anesth 18:438–441PubMedCrossRefGoogle Scholar
  40. 40.
    Shin CH, Long DR, McLean D et al (2017) Effects of intraoperative fluid management on postoperative outcomes: a hospital registry study. Ann Surg 266:545–554CrossRefGoogle Scholar
  41. 41.
    Thacker JK, Mountford WK, Ernst FR, Krukas MR, Mythen MM (2016) Perioperative fluid utilization variability and association with outcomes: considerations for enhanced recovery efforts in sample US surgical populations. Ann Surg 263:502–510PubMedCrossRefGoogle Scholar
  42. 42.
    Vollmar B, Menger MD (2009) The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev 89:1269–1339PubMedCrossRefGoogle Scholar
  43. 43.
    Miller RD, Eriksson LI, Fleisher LA et al (2014) Miller’s anesthesia, 8. Aufl. Elsevier Saunders, PhiladelphiaGoogle Scholar
  44. 44.
    Gelman S (2008) Venous function and central venous pressure: a physiologic story. Anesthesiology 108:735–748PubMedCrossRefGoogle Scholar
  45. 45.
    Vagts DA, Iber T, Puccini M et al (2003) The effects of thoracic epidural anesthesia on hepatic perfusion and oxygenation in healthy pigs during general anesthesia and surgical stress. Anesth Analg 97:1824–1832PubMedCrossRefGoogle Scholar
  46. 46.
    Gelman S, Dillard E, Bradley EL Jr. (1987) Hepatic circulation during surgical stress and anesthesia with halothane, isoflurane, or fentanyl. Anesth Analg 66:936–943PubMedCrossRefGoogle Scholar
  47. 47.
    Meierhenrich R, Gauss A, Muhling B et al (2010) The effect of propofol and desflurane anaesthesia on human hepatic blood flow: a pilot study. Anaesthesia 65:1085–1093PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Meierhenrich R, Wagner F, Schutz W et al (2009) The effects of thoracic epidural anesthesia on hepatic blood flow in patients under general anesthesia. Anesth Analg 108:1331–1337PubMedCrossRefGoogle Scholar
  49. 49.
    Zhu T, Pang Q, McCluskey SA, Luo C (2008) Effect of propofol on hepatic blood flow and oxygen balance in rabbits. Can J Anaesth 55:364–370PubMedCrossRefGoogle Scholar
  50. 50.
    Lautt WW (2007) Regulatory processes interacting to maintain hepatic blood flow constancy: vascular compliance, hepatic arterial buffer response, hepatorenal reflex, liver regeneration, escape from vasoconstriction. Hepatol Res 37:891–903PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ayuse T, Mishima K, Oi K, Ureshino H, Sumikawa K (2010) Effects of nitric oxide donor on hepatic arterial buffer response in anesthetized pigs. J Invest Surg 23:183–189PubMedCrossRefGoogle Scholar
  52. 52.
    Karplus G, Szold A, Serour F, Weinbroum AA (2012) The hepatorenal reflex contributes to the induction of oliguria during pneumoperitoneum in the rat. Surg Endosc 26:2477–2483PubMedCrossRefGoogle Scholar
  53. 53.
    Rothe CF (1983) Reflex control of veins and vascular capacitance. Physiol Rev 63:1281–1342PubMedCrossRefGoogle Scholar
  54. 54.
    Guyton AC (1955) Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol Rev 35:123–129CrossRefGoogle Scholar
  55. 55.
    Brienza N, Revelly JP, Ayuse T, Robotham JL (1995) Effects of PEEP on liver arterial and venous blood flows. Am J Respir Crit Care Med 152:504–510PubMedCrossRefGoogle Scholar
  56. 56.
    Saner FH, Pavlakovic G, Gu Y et al (2006) Does PEEP impair the hepatic outflow in patients following liver transplantation? Intensive Care Med 32:1584–1590PubMedCrossRefGoogle Scholar
  57. 57.
    Saner FH, Damink OSW, Pavlakovic G et al (2008) Positive end-expiratory pressure induces liver congestion in living donor liver transplant patients: myth or fact. Transplantation 85:1863–1866PubMedCrossRefGoogle Scholar
  58. 58.
    Saner FH, Damink OSW, Pavlakovic G et al (2010) How far can we go with positive end-expiratory pressure (PEEP) in liver transplant patients? J Clin Anesth 22:104–109PubMedCrossRefGoogle Scholar
  59. 59.
    Reuter DA, Felbinger TW, Schmidt C et al (2003) Trendelenburg positioning after cardiac surgery: effects on intrathoracic blood volume index and cardiac performance. Eur J Anaesthesiol 20:17–20PubMedCrossRefGoogle Scholar
  60. 60.
    Sand L, Rizell M, Houltz E et al (2011) Effect of patient position and PEEP on hepatic, portal and central venous pressures during liver resection. Acta Anaesthesiol Scand 55:1106–1112PubMedCrossRefGoogle Scholar
  61. 61.
    Kortgen A, Silomon M, Pape-Becker C, Buchinger H, Grundmann U, Bauer M (2009) Thoracic but not lumbar epidural anaesthesia increases liver blood flow after major abdominal surgery. Eur J Anaesthesiol 26:111–116PubMedCrossRefGoogle Scholar
  62. 62.
    Sand L, Lundin S, Rizell M, Wiklund J, Stenqvist O, Houltz E (2014) Nitroglycerine and patient position effect on central, hepatic and portal venous pressures during liver surgery. Acta Anaesthesiol Scand 58:961–967PubMedCrossRefGoogle Scholar
  63. 63.
    Bown LS, Ricksten SE, Houltz E et al (2016) Vasopressin-induced changes in splanchnic blood flow and hepatic and portal venous pressures in liver resection. Acta Anaesthesiol Scand 60:607–615PubMedCrossRefGoogle Scholar
  64. 64.
    Raedler C, Voelckel WG, Wenzel V et al (2004) Treatment of uncontrolled hemorrhagic shock after liver trauma: fatal effects of fluid resuscitation versus improved outcome after vasopressin. Anesth Analg 98:1759–1766PubMedCrossRefGoogle Scholar
  65. 65.
    Fayed N, Refaat EK, Yassein TE, Alwaraqy M (2013) Effect of perioperative terlipressin infusion on systemic, hepatic, and renal hemodynamics during living donor liver transplantation. J Crit Care 28:775–782PubMedCrossRefGoogle Scholar
  66. 66.
    Zhu P, Lau WY, Chen YF et al (2012) Randomized clinical trial comparing infrahepatic inferior vena cava clamping with low central venous pressure in complex liver resections involving the Pringle manoeuvre. Br J Surg 99:781–788PubMedCrossRefGoogle Scholar
  67. 67.
    Rahbari NN, Koch M, Zimmermann JB et al (2011) Infrahepatic inferior vena cava clamping for reduction of central venous pressure and blood loss during hepatic resection: a randomized controlled trial. Ann Surg 253:1102–1110PubMedCrossRefGoogle Scholar
  68. 68.
    Kato M, Kubota K, Kita J, Shimoda M, Rokkaku K, Sawada T (2008) Effect of infra-hepatic inferior vena cava clamping on bleeding during hepatic dissection: a prospective, randomized, controlled study. World J Surg 32:1082–1087PubMedCrossRefGoogle Scholar
  69. 69.
    AWMF (2014) S3-Leitlinine Intravasale Volumentherapie beim Erwachsenen. Leitliniendetailansicht. www.awmf.org/leitlinien/detail/ll/001-020.html. Zugegriffen: 31. Juli 2018Google Scholar
  70. 70.
    Jozwiak M, Teboul JL, Monnet X (2015) Extravascular lung water in critical care: recent advances and clinical applications. Ann Intensive Care 5:38PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • C. R. Behem
    • 1
  • M. F. Gräßler
    • 1
  • C. J. C. Trepte
    • 1
  1. 1.Zentrum für Anästhesiologie und Intensivmedizin, Klinik und Poliklinik für AnästhesiologieUniversitätsklinikum Hamburg-Eppendorf (UKE)HamburgDeutschland

Personalised recommendations