Advertisement

Nailing of proximal ulna fractures: biomechanical comparison of a new locked nail with angular stable plating

  • Johannes Christof HopfEmail author
  • Tobias Eckhard Nowak
  • Dorothea Mehler
  • Charlotte Arand
  • Dominik Gruszka
  • Pol Maria Rommens
Original Article
  • 19 Downloads

Abstract

Purpose

Proximal ulna fractures are common injuries and frequently treated with angular stable plating. This surgical option shows good functional results. Relevant drawbacks such as large soft tissue exposure, compromised blood supply of fracture fragments and disturbing osteosynthetic material are described. The aim of this study was to compare a new locked proximal ulna nail with angular stable plating in a biomechanical testing setup for extraarticular proximal ulna fractures.

Methods

Ten pairs of sawbones with a Jupiter type IIB proximal ulna fracture (OTA 2U1A3.1) were tested after osteosynthesis with the mentioned implants in a servo-pneumatic testing machine. The testing setup simulates physiological joint motion (0°–90°) under cyclic loading (30–300 N). Primary stability and loosening of both constructs were quantified using micromotion video-analysis after 608 test cycles.

Results

The micromotion analysis showed significantly higher primary stability of the locked nail (0.29 ± 0.13 mm) compared to the angular stable plate (0.97 ± 0.30 mm, p < 0.001). Both implants showed a low amount of loosening after completion of the test cycles. The construct with the locked nail (0.08 ± 0.06 mm) showed significantly lower dislocation of the fragments measured at the anterior cortex (plate 0.24 ± 0.13 mm, p < 0.001).

Conclusion

Nailing of proximal ulna fractures shows significantly higher primary stability and lower loosening compared to angular stable plating in our testing setup.

Keywords

Proximal ulna fractures Nailing Biomechanical testing 

Notes

Funding

MEDIN s. a. provided all implants for this study. Besides this non-financial support, no other condition that presents a potential conflict of interest exists.

Compliance with ethical standards

Conflict of interest

All the authors state that they have no other conflict of interest.

References

  1. 1.
    German Federal Statistical Office. Diagnostic data for proximal ulna fractures in Germany (inpatient treatment). 2018 [cited 2018 Sep 11]. http://www.gbe-bund.de/oowa921-install/servlet/oowa/aw92/dboowasys921.xwdevkit/xwd_init?gbe.isgbetol/xs_start_neu/&p_aid=3&p_aid=59570519&nummer=550&p_sprache=D&p_indsp=522&p_aid=17398533.
  2. 2.
    Duckworth AD, Clement ND, Aitken SA, Court-Brown CM, McQueen MM. The epidemiology of fractures of the proximal ulna. Injury. 2012;43:343–6.CrossRefGoogle Scholar
  3. 3.
    Rouleau DM, Sandman E, van Riet R, Galatz LM. Management of fractures of the proximal ulna. J Am Acad Orthop Surg. 2013;21:149–60.PubMedGoogle Scholar
  4. 4.
    Niéto H, Billaud A, Rochet S, Lavoinne N, Loubignac F, Pietu G, et al. Proximal ulnar fractures in adults: a review of 163 cases. Injury. 2015;46(Suppl 1):S18–23.CrossRefGoogle Scholar
  5. 5.
    Klug A, Gramlich Y, Buckup J, Wincheringer D, Hoffmann R, Schmidt-Horlohé K. Excellent results and low complication rate for anatomic polyaxial locking plates in comminuted proximal ulna fractures. J Shoulder Elbow Surg. 2018;27(12):2198–2206.CrossRefGoogle Scholar
  6. 6.
    Powell AJ, Farhan-Alanie OM, McGraw IWW. Tension band wiring versus locking plate fixation for simple, two-part Mayo 2A olecranon fractures: a comparison of post-operative outcomes, complications, reoperations and economics. Musculoskelet Surg. 2018;103(2):155–60.CrossRefGoogle Scholar
  7. 7.
    Koslowsky TC, Berger V, Hopf JC, Müller LP. Presentation of the vascular supply of the proximal ulna using a sequential plastination technique. Surg Radiol Anat. 2015;37:749–55.CrossRefGoogle Scholar
  8. 8.
    Edwards SG, Cohen MS, Lattanza LL, Iorio ML, Daniels C, Lodha S, et al. Surgeon perceptions and patient outcomes regarding proximal ulna fixation: a multicenter experience. J Shoulder Elbow Surg. 2012;21:1637–43.CrossRefGoogle Scholar
  9. 9.
    Snoddy MC, Lang MF, An TJ, Mitchell PM, Grantham WJ, Hooe BS, et al. Olecranon fractures: factors influencing re-operation. Int Orthop. 2014;38:1711–6.CrossRefGoogle Scholar
  10. 10.
    Puchwein P, Schildhauer TA, Schöffmann S, Heidari N, Windisch G, Pichler W. Three-dimensional morphometry of the proximal ulna: a comparison to currently used anatomically preshaped ulna plates. J Shoulder Elbow Surg. 2012;21:1018–23.CrossRefGoogle Scholar
  11. 11.
    Totlis T, Anastasopoulos N, Apostolidis S, Paraskevas G, Terzidis I, Natsis K. Proximal ulna morphometry: which are the “true” anatomical preshaped olecranon plates? Surg Radiol Anat. 2014;36:1015–22.CrossRefGoogle Scholar
  12. 12.
    Duckworth AD, Clement ND, McEachan JE, White TO, Court-Brown CM, McQueen MM. Prospective randomised trial of non-operative versus operative management of olecranon fractures in the elderly. Bone Jt J. 2017;99-B:964–72.CrossRefGoogle Scholar
  13. 13.
    Argintar E, Martin BD, Singer A, Hsieh AH, Edwards S. A biomechanical comparison of multidirectional nail and locking plate fixation in unstable olecranon fractures. J Shoulder Elbow Surg. 2012;21:1398–405.CrossRefGoogle Scholar
  14. 14.
    Nowak TE, Burkhart KJ, Andres T, Dietz SO, Klitscher D, Mueller LP, et al. Locking-plate osteosynthesis versus intramedullary nailing for fixation of olecranon fractures: a biomechanical study. Int Orthop. 2013;37:899–903.CrossRefGoogle Scholar
  15. 15.
    Nijs S, Graeler H, Bellemans J. Fixing simple olecranon fractures with the Olecranon Osteotomy Nail (OleON). Oper Orthop Traumatol. 2011;23:438–45.CrossRefGoogle Scholar
  16. 16.
    Gehr J, Friedl W. Intramedullary locking compression nail for the treatment of an olecranon fracture. Oper Orthop Traumatol. 2006;18:199–21313.CrossRefGoogle Scholar
  17. 17.
    Lee SK, Kim KJ, Lee JW, Choy WS. Plate osteosynthesis versus intramedullary nailing for both forearm bones fractures. Eur J Orthop Surg Traumatol. 2014;24:769–76.CrossRefGoogle Scholar
  18. 18.
    Argintar E, Cohen M, Eglseder A, Edwards S. Clinical results of olecranon fractures treated with multiplanar locked intramedullary nailing. J Orthop Trauma. 2013;27:140–4.CrossRefGoogle Scholar
  19. 19.
    Beşer CG, Demiryürek D, Özsoy H, Erçakmak B, Hayran M, Kızılay O, et al. Redefining the proximal ulna anatomy. Surg Radiol Anat. 2014;36:1023–31.CrossRefGoogle Scholar
  20. 20.
    Jupiter JB, Leibovic SJ, Ribbans W, Wilk RM. The posterior Monteggia lesion. J Orthop Trauma. 1991;5:395–402.CrossRefGoogle Scholar
  21. 21.
    Müller LP, Hollinger B, Burkhart K. Biomechanik. Expertise Ellenbogen. Stuttgart: Georg Thieme Verlag KG; 2016. p. 40–51.CrossRefGoogle Scholar
  22. 22.
    Nicol A, Berme M, Paul J. A biomechanical analysis of elbow joint function. Joint replacement in the upper limb. London: Institution of Mechanical Engineers; 1977. p. 45–51.Google Scholar
  23. 23.
    An KN, Hui FC, Morrey BF, Linscheid RL, Chao EY. Muscles across the elbow joint: a biomechanical analysis. J Biomech. 1981;14:659–69.CrossRefGoogle Scholar
  24. 24.
    Edwards SG, Argintar E, Lamb J. Management of comminuted proximal ulna fracture-dislocations using a multiplanar locking intramedullary nail. Tech Hand Up Extrem Surg. 2011;15:106–14.CrossRefGoogle Scholar
  25. 25.
    Buijze G, Kloen P. Clinical evaluation of locking compression plate fixation for comminuted olecranon fractures. J Bone Jt Surg Am. 2009;91:2416–20.CrossRefGoogle Scholar
  26. 26.
    Nowak TE, Burkhart KJ, Mueller LP, Mattyasovszky SG, Andres T, Sternstein W, et al. New intramedullary locking nail for olecranon fracture fixation—an in vitro biomechanical comparison with tension band wiring. J Trauma. 2010;69:E56–61.CrossRefGoogle Scholar
  27. 27.
    Nowak TE, Mueller LP, Burkhart KJ, Sternstein W, Reuter M, Rommens PM. Dynamic biomechanical analysis of different olecranon fracture fixation devices–tension band wiring versus two intramedullary nail systems: an in-vitro cadaveric study. Clin Biomech (Bristol, Avon). 2007;22:658–64.CrossRefGoogle Scholar
  28. 28.
    Kern MJ, Casscells ND, Argintar EH. Placement of an intramedullary nail for the treatment of proximal ulnar fractures. JBJS Essent Surg Tech. 2015;5:e23.CrossRefGoogle Scholar
  29. 29.
    Hackl M, Mayer K, Weber M, Staat M, van Riet R, Burkhart KJ, et al. Plate osteosynthesis of proximal ulna fractures-a biomechanical micromotion analysis. J Hand Surg Am. 2017;42:834.e1–.e7.CrossRefGoogle Scholar
  30. 30.
    Rochet S, Obert L, Lepage D, Lemaire B, Leclerc G, Garbuio P. Proximal ulna comminuted fractures: fixation using a double-plating technique. Orthop Traumatol Surg Res. 2010;96:734–40.CrossRefGoogle Scholar
  31. 31.
    Gordon MJ, Budoff JE, Yeh ML, Luo Z-P, Noble PC. Comminuted olecranon fractures: a comparison of plating methods. J Shoulder Elbow Surg. 2006;15:94–9.CrossRefGoogle Scholar
  32. 32.
    Gruszka D, Arand C, Greenfield J, Nowak TE, Kuechle R, Kuhn S, et al. Is the novel olecranon tension plate a valid alternative to tension band wiring of olecranon fractures? A biomechanical study on cadaver bones. Arch Orthop Trauma Surg. 2017;137:1651–8.CrossRefGoogle Scholar
  33. 33.
    Wagner FC, Konstantinidis L, Hohloch N, Hohloch L, Suedkamp NP, Reising K. Biomechanical evaluation of two innovative locking implants for comminuted olecranon fractures under high-cycle loading conditions. Injury. 2015;46:985–9.CrossRefGoogle Scholar
  34. 34.
    Wegmann K, Engel K, Skouras E, Hackl M, Müller LP, Hopf JC, et al. Reconstruction of Monteggia-like proximal ulna fractures using different fixation devices: a biomechanical study. Injury. 2016;47:1636–41.CrossRefGoogle Scholar
  35. 35.
    Topp T, Müller T, Huss S, Kann PH, Weihe E, Ruchholtz S, et al. Embalmed and fresh frozen human bones in orthopedic cadaveric studies: which bone is authentic and feasible? Acta Orthop. 2012;83:543–7.CrossRefGoogle Scholar
  36. 36.
    Zdero R, Olsen M, Bougherara H, Schemitsch EH. Cancellous bone screw purchase: a comparison of synthetic femurs, human femurs, and finite element analysis. Proc Inst Mech Eng H. 2008;222:1175–83.CrossRefGoogle Scholar
  37. 37.
    Cristofolini L, Viceconti M, Cappello A, Toni A. Mechanical validation of whole bone composite femur models. J Biomech. 1996;29:525–35.CrossRefGoogle Scholar
  38. 38.
    Amin DB, Lawless IM, Sommerfeld D, Stanley RM, Ding B, Costi JJ. Effect of potting technique on the measurement of six degree-of-freedom viscoelastic properties of human lumbar spine segments. J Biomech Eng. 2015;137:054501.CrossRefGoogle Scholar
  39. 39.
    Kim D-G, Dong XN, Cao T, Baker KC, Shaffer RR, Fyhrie DP, et al. Evaluation of filler materials used for uniform load distribution at boundaries during structural biomechanical testing of whole vertebrae. J Biomech Eng. 2006;128:161–5.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Orthopedics and TraumatologyUniversity Medical CenterMainzGermany

Personalised recommendations