Reduced complication rates for unstable trochanteric fractures managed with third-generation nails: Gamma 3 nail versus PFNA

  • Felix BonnaireEmail author
  • Thomas Lein
  • Tim Fülling
  • Philipp Bula
Original Article



Third-generation nails for the management of unstable trochanteric fractures were evaluated with regard to outcomes.

Patients and methods

A prospective observational study comparing the Gamma 3 nail and the Proximal Femoral Nail Antirotation (PFNA) in 106 unstable trochanteric fractures confirms the recently reported low intra- and postoperative complication rates from retrospective cohort studies.


Studies of same generations of both intramedullary nail systems did not reveal significant differences in intra- or postoperative complications. Intraoperative dislocation during nail insertion occurred 7 times for the Gamma nail and 9 times for the PFNA. The standard PFNA had to be exchanged intraoperatively for a shorter one on two occasions. Superficial wound healing disorders and hematoma requiring revision were observed in four patients in the Gamma 3 nail group and in three patients in the PFNA group. No deep infections were documented. Mechanical complications required revision in four patients (7.5%) after Gamma nailing and in two patients (3.8%) after PFNA. Postoperative rotation of the head–neck fragment was observed for the Gamma nail in three patients, not in the PFNA group. This was not statistically significant (p = 0.08). There were neither incidences of cut out without renewed trauma nor intraoperative fracture or postoperative femoral fracture. Nonunion affected 1 of 18 patients in late follow-up (p = 0.3) in the Gamma 3 nail group.


The Gamma 3 nail and the PFNA yielded comparable clinical results and significantly improved outcomes for unstable trochanteric fractures compared to older nail generations.


PFNA Gamma 3 nail Unstable trochanteric fractures Proximal femur Complications Third-generation nails 


Compliance with ethical approval

Conflict of interest

The corresponding author declares that there are no conflicts of interest.


  1. 1.
    Skála-Rosenbaum J, Bartoníček J, Ríha D, Waldauf P, Džupa V. Single-centre study of hip fractures in Prague, Czech Republic, 1997–2007. Int Orthop. 2011;35(4):587–93.Google Scholar
  2. 2.
    Shao C-J, Hsieh Y-H, Tsai C-H, Lai K-A. A nationwide seven-year trend of hip fractures in the elderly population of Taiwan. Bone. 2009;44(1):125–9.Google Scholar
  3. 3.
    Icks A, Haastert B, Wildner M, Becker C, Meyer G. Trend of hip fracture incidence in Germany 1995–2004: a population-based study. Osteoporosis International: A Journal Established as Result of Cooperation Between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2008;19(8):1139–45.Google Scholar
  4. 4.
    Arakaki H, Owan I, Kudoh H, Horizono H, Arakaki K, Ikema Y, Shinjo H, Hayashi K, Kanaya F. Epidemiology of hip fractures in Okinawa, Japan. J Bone Miner Metab. 2011;29:309–14.Google Scholar
  5. 5.
    Häussler B, Gothe H, Göl D, Glaeske G, Pientka L, Felsenberg D. Epidemiology, treatment and costs of osteoporosis in Germany–the BoneEVA study. Osteoporos Int. 2007;18:77–84.Google Scholar
  6. 6.
    Nikolaou VS, Papathanasopoulos A, Giannoudis PV. What’s new in the management of proximal femoral fractures? Injury. 2008;39(12):1309–18.Google Scholar
  7. 7.
    Stürmer KM, Dresing K. Pertrochanteric fractures. Zentralblatt Für Chirurgie. 1995;120(11):862–72.Google Scholar
  8. 8.
    Strauss E, Frank J, Lee J, Kummer FJ, Tejwani N. Helical blade versus sliding hip screw for treatment of unstable intertrochanteric hip fractures: a biomechanical evaluation. Injury. 2006;37(10):984–9.Google Scholar
  9. 9.
    Röderer G, Moll S, Gebhard F, Claes L, Krischak G. Side plate fixation vs. intramedullary nailing in an unstable medial femoral neck fracture model: a comparative biomechanical study. Clin Biomech Bristol Avon. 2011;26(2):141–6.Google Scholar
  10. 10.
    Parker MJ, Handoll HH. Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst Rev. 2010;9:CD000093.Google Scholar
  11. 11.
    Lucke M, Burghardt RD, Siebenlist S, Ganslmeier A, Stöckle U. Medial migration of lag screw with intrapelvic dislocation in gamma nailing–a unique problem? A report of 2 cases. J Orthop Trauma. 2010;24(2):e6–11.Google Scholar
  12. 12.
    Lenich A, Vester H, Nerlich M, Mayr E, Stöckle U, Füchtmeier B. Clinical comparison of the second and third generation of intramedullary devices for trochanteric fractures of the hip–Blade vs screw. Injury. 2010;41(12):1292–6.Google Scholar
  13. 13.
    Stangl F (2010) Biomechanische in-vitro-Untersuchung des Stabilisierungspotentials des Gamma-3-Nagels und des Proximalen Femurnagels bei der Versorgung der pertrochantären Fraktur unter zyklischer physiologischer Belastung. Dissertation, Medizinischen Fakultät der Universität Regensburg; 2010. urn:nbn:de:bvb:355-epub-158239.Google Scholar
  14. 14.
    Bonnaire F, Weber A, Bösl O, Eckhardt C, Schwieger K, Linke B. Cutting out‘in pertrochanteric fractures–problem of osteoporosis? Der Unfallchirurg. 2007;110(5):425–32.Google Scholar
  15. 15.
    Wang Y, Yang YY, Yu ZH, Li CQ, Wu YS, Zheng XX. Comparative study of intertrochanteric fractures treated with proximal femur locking compress plate in aged. Zhongguo Gu Shang China J Orthop Traumatol. 2011;24(5):370–3.Google Scholar
  16. 16.
    Schipper IB, et al. Treatment of unstable trochanteric fractures. Randomised comparison of the gamma nail and the proximal femoral nail. J Bone Jt Surg. 2004;86(1):86–94.Google Scholar
  17. 17.
    Howden LM, Meyer JA. Census of Population and Housing. Mai-2011. [Online]; 2010. Accessed 12 Jan 2019.
  18. 18.
    Lesić A, Jarebinski M, Pekmezović T, Bumbasirević M, Spasovski D, Atkinson HDE. Epidemiology of hip fractures in Belgrade, Serbia Montenegro, 1990-2000. Arch Orthop Trauma Surg. 2007;127(3):179–83.Google Scholar
  19. 19.
    Yaozeng X, Dechun G, Huilin Y, Guangming Z, Xianbin W. Comparative study of trochanteric fracture treated with the proximal femoral nail anti-rotation and the third generation of gamma nail. Injury. 2010;41(12):1234–8.Google Scholar
  20. 20.
    Leung KS, Procter P, Robioneck B, Behrens K. Geometric mismatch of the Gamma nail to the Chinese femur. Clin Orthop Relat Res. 1996;323:42–8.Google Scholar
  21. 21.
    Lv C, et al. The new proximal femoral nail antirotation-Asia: early results. Orthopedics. 2011;34(5):351.Google Scholar
  22. 22.
    Synthes GmbH Schweiz, „PFNA. Proximaler Femur Nagel Antirotation- Operationstechnik“. 2010.Google Scholar
  23. 23.
    Germany Stryker. Gamma 3 Nagel-Operationstechnik. Germany: Stryker Osteosynthesis Schoenkirchen; 2005.Google Scholar
  24. 24.
    Utrilla AL, Reig JS, Muñoz FM, Tufanisco CB. Trochanteric gamma nail and compression hip screw for trochanteric fractures: a randomized, prospective, comparative study in 210 elderly patients with a new design of the gamma nail. J Orthop Trauma. 2005;19(4):229–33.Google Scholar
  25. 25.
    Wild M, et al. The dynamics of proximal femoral nails: a clinical comparison between PFNA and Targon PF. Orthopedics. 2010;33:8.Google Scholar
  26. 26.
    Simmermacher RKJ, et al. The new proximal femoral nail antirotation (PFNA) in daily practice: results of a multicentre clinical study. Injury. 2008;39(8):932–9.Google Scholar
  27. 27.
    Lopes JB, Danilevicius CF, Takayama L, Caparbo VF, Menezes PR, Scazufca M, Kuroishi ME, Pereira RMR. Prevalence and risk factors of radiographic vertebral fracture in Brazilian community-dwelling elderly. Osteoporos Int. 2011;22:711–9.Google Scholar
  28. 28.
    Park JH, Lee YS, Park JW, Wang JH, Kim JG. A comparative study of screw and helical proximal femoral nails for the treatment of intertrochanteric fractures. Orthopedics. 2010;33(2):81–5.Google Scholar
  29. 29.
    Varela-Egocheaga JR, Iglesias-Colao R, Suárez-Suárez MA, Fernández-Villán M, González-Sastre V, Murcia-Mazón A. Minimally invasive osteosynthesis in stable trochanteric fractures: a comparative study between Gotfried percutaneous compression plate and Gamma 3 intramedullary nail. Arch Orthop Trauma Surg. 2009;129(10):1401–7.Google Scholar
  30. 30.
    Nuber S, Schönweiss T, Rüter A. Stabilisation of unstable trochanteric femoral fractures dynamic hip screw (DHS) with trochanteric stabilisation plate vs. proximal femur nail (PFN). Der Unfallchirurg. 2003;106(1):39–47.Google Scholar
  31. 31.
    Bjørgul K, Reikerås O. Outcome after treatment of complications of Gamma nailing: a prospective study of 554 trochanteric fractures. Acta Orthop. 2007;78(2):231–5.Google Scholar
  32. 32.
    Müller M, Seitz A, Besch L, Hilgert RE, Seekamp A. Proximal femur fractures: results and complications after osteosynthesis with PFN and TGN. Der Unfallchirurg. 2008;111(2):71–7.Google Scholar
  33. 33.
    Bhandari M, Schemitsch E, Jönsson A, Zlowodzki M, Haidukewych GJ. Gamma Nails Revisited: gamma Nails Versus Compression Hip Screws in the Management of Intertrochanteric Fractures of the Hip: A Meta-Analysis. J Orthop Trauma. 2009;23(6):460–4.Google Scholar
  34. 34.
    Palm H, Lysén C, Krasheninnikoff M, Holck K, Jacobsen S, Gebuhr P. Intramedullary nailing appears to be superior in pertrochanteric hip fractures with a detached greater trochanter: 311 consecutive patients followed for 1 year. Acta Orthopaedica. 2011;82(2):166–70.Google Scholar
  35. 35.
    Bhandari M, Sprague S, Schemitsch EH. Resolving controversies in hip fracture care: the need for large collaborative trials in hip fractures. J Orthop Trauma. 2009;23(6):479–84.Google Scholar
  36. 36.
    Stryker Deutschland GmbH, Gamma 3 Nagel- Operationstechnik. 2005.Google Scholar
  37. 37.
    Saarenpää I, Heikkinen T, Ristiniemi J, Hyvönen P, Leppilahti J, Jalovaara P. Functional comparison of the dynamic hip screw and the Gamma locking nail in trochanteric hip fractures: a matched-pair study of 268 patients. Int Orthop. 2007;33(1):255–60.Google Scholar
  38. 38.
    Parker MJ, Handoll HHG. Intramedullary nails for extracapsular hip fractures in adults. Cochrane Database of Syst Rev. 2005;2:004961.Google Scholar
  39. 39.
    Penzkofer J, Mendel T, Bauer C, Brehme K. Treatment results of pertrochanteric and subtrochanteric femoral fractures: a retrospective comparison of PFN and PFNA. Der Unfallchirurg. 2009;112(8):699–705.Google Scholar
  40. 40.
    Kraus M, et al. Clinical evaluation of PFNA® and relationship between the tip-apex distance and mechanical failure. Der Unfallchirurg. 2011;114(6):470–8.Google Scholar
  41. 41.
    Gardenbroek TJ, Segers MJM, Simmermacher RKJ, Hammacher ER. The proximal femur nail antirotation: an identifiable improvement in the treatment of unstable pertrochanteric fractures? J Trauma. 2011;71(1):169–74.Google Scholar
  42. 42.
    Apley AG, Warwick D, Solomon L. Apley’s system of orthopaedics and fractures. 8th ed. London: Arnold; 2001.Google Scholar
  43. 43.
    Leung KS, So WS, Shen WY, Hui PW. Gamma nails and dynamic hip screws for peritrochanteric fractures. A randomised prospective study in elderly patients. J Bone Jt Surg. 1992;74(3):345–51.Google Scholar
  44. 44.
    Bridle SH, Patel AD, Bircher M, Calvert PT. Fixation of intertrochanteric fractures of the femur. A randomised prospective comparison of the gamma nail and the dynamic hip screw. J Bone Jt Surg. 1991;73(2):330–4.Google Scholar
  45. 45.
    Lorich DG, Geller DS, Nielson JH. Osteoporotic pertrochanteric hip fractures: management and current controversies. Instr Course Lect. 2004;53:441–54.Google Scholar
  46. 46.
    Sommers MB, et al. A laboratory model to evaluate cutout resistance of implants for pertrochanteric fracture fixation. J Orthop Trauma. 2004;18(6):361–8.Google Scholar
  47. 47.
    Strauss EJ, Kummer FJ, Koval KJ, Egol KA. The Z-effect‘phenomenon defined: a laboratory study. J Orthop Res. 2007;25(12):1568–73.Google Scholar
  48. 48.
    Loch DA, Kyle RF, Bechtold JE, Kane M, Anderson K, Sherman RE. „Forces required to initiate sliding in second-generation intramedullary nails. J Bone Jt Surg Am. 1998;80(11):1626–31.Google Scholar
  49. 49.
    Hesse B, Gächter A. Complications following the treatment of trochanteric fractures with the gamma nail. Arch Orthop Trauma Surg. 2004;124(10):692–8.Google Scholar
  50. 50.
    Weil YA, Gardner MJ, Mikhail G, Pierson G, Helfet DL, Lorich DG. Medial migration of intramedullary hip fixation devices: a biomechanical analysis. Arch Orthop Trauma Surg. 2008;128(2):227–34.Google Scholar
  51. 51.
    Stern R. Medial migration of lag screw with intrapelvic dislocation in Gamma nailing–a unique problem? A report of two cases. J Orthop Trauma. 2010;24(7):e74.Google Scholar
  52. 52.
    Werner-Tutschku W, Lajtai G, Schmiedhuber G, Lang T, Pirkl C, Orthner E. Intra- and perioperative complications in the stabilization of per- and subtrochanteric femoral fractures by means of PFN. Der Unfallchirurg. 2002;105(10):881–5.Google Scholar
  53. 53.
    Hohendorff B, Meyer P, Menezes D, Meier L, Elke R. Treatment results and complications after PFN osteosynthesis. Der Unfallchirurg. 2005;108(11):938.Google Scholar
  54. 54.
    Brammar TJ, Kendrew J, Khan RJK, Parker MJ. Reverse obliquity and transverse fractures of the trochanteric region of the femur; a review of 101 cases. Injury. 2005;36(7):851–7.Google Scholar
  55. 55.
    Geller JA, Saifi C, Morrison TA, Macaulay W. Tip-apex distance of intramedullary devices as a predictor of cut-out failure in the treatment of peritrochanteric elderly hip fractures. Int Orthop. 2010;34(5):719–22.Google Scholar
  56. 56.
    Stern R, Lübbeke A, Suva D, Miozzari H, Hoffmeyer P. Prospective randomised study comparing screw versus helical blade in the treatment of low-energy trochanteric fractures. Int Orthop. 2011;35:1855–61.Google Scholar
  57. 57.
    Barton TM, Gleeson R, Topliss C, Greenwood R, Harries WJ, Chesser TJS. „A comparison of the long gamma nail with the sliding hip screw for the treatment of AO/OTA 31-A2 fractures of the proximal part of the femur: a prospective randomized trial. J Bone Jt Surg American. 2010;92(4):792–8.Google Scholar
  58. 58.
    Mereddy P, Kamath S, Ramakrishnan M, Malik H, Donnachie N. The AO/ASIF proximal femoral nail antirotation (PFNA): a new design for the treatment of unstable proximal femoral fractures. Injury. 2009;40(4):428–32.Google Scholar
  59. 59.
    Pu J-S, Liu L, Wang G-L, Fang Y, Yang T-F. Results of the proximal femoral nail anti-rotation (PFNA) in elderly Chinese patients. Int Orthop. 2009;33(5):1441–4.Google Scholar
  60. 60.
    Liu Y, et al. Mid-term outcomes after intramedullary fixation of peritrochanteric femoral fractures using the new proximal femoral nail antirotation (PFNA). Injury. 2010;41(8):810–7.Google Scholar
  61. 61.
    Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Jt Surg. 1995;77(7):1058–64.Google Scholar
  62. 62.
    Strassberger C, Unger L, Weber AT, Defer A, Bonnaire FA. Management of osteoporosis-related bone fractures: an integrated concept of care. Arch Orthop Trauma Surg. 2010;130(1):103–9.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Felix Bonnaire
    • 1
    Email author
  • Thomas Lein
    • 1
    • 2
  • Tim Fülling
    • 1
  • Philipp Bula
    • 1
    • 3
  1. 1.Städtisches Klinikum Dresden Standort FriedrichstadtDresdenGermany
  2. 2.Diakonissenkrankenhaus DresdenDresdenGermany
  3. 3.Klinikum GüterslohDresdenGermany

Personalised recommendations