Advertisement

Electrical stimulation-based bone fracture treatment, if it works so well why do not more surgeons use it?

  • Mit Balvantray Bhavsar
  • Zhihua Han
  • Thomas DeCoster
  • Liudmila Leppik
  • Karla Mychellyne Costa Oliveira
  • John H BarkerEmail author
Review Article
  • 38 Downloads

Abstract

Background

Electrical stimulation (EStim) has been proven to promote bone healing in experimental settings and has been used clinically for many years and yet it has not become a mainstream clinical treatment.

Methods

To better understand this discrepancy we reviewed 72 animal and 69 clinical studies published between 1978 and 2017, and separately asked 161 orthopedic surgeons worldwide about their awareness, experience, and acceptance of EStim for treating fracture patients.

Results

Of the 72 animal studies, 77% reported positive outcomes, and the most common model, bone, fracture type, and method of administering EStim were dog, tibia, large bone defects, and DC, respectively. Of the 69 clinical studies, 73% reported positive outcomes, and the most common bone treated, fracture type, and method of administration were tibia, delayed/non-unions, and PEMF, respectively. Of the 161 survey respondents, most (73%) were aware of the positive outcomes reported in the literature, yet only 32% used EStim in their patients. The most common fracture they treated was delayed/non-unions, and the greatest problems with EStim were high costs and inconsistent results.

Conclusion

Despite their awareness of EStim’s pro-fracture healing effects few orthopedic surgeons use it in their patients. Our review of the literature and survey indicate that this is due to confusion in the literature due to the great variation in methods reported, and the inconsistent results associated with this treatment approach. In spite of this surgeons seem to be open to using this treatment if advancements in the technology were able to provide an easy to use, cost-effective method to deliver EStim in their fracture patients. 

Keywords

Bone fracture healing Electrical stimulation treatment Literature review Survey of orthopedic surgeons 

Notes

Funding

This study was supported in part by the Friedrichsheim Foundation (Stiftung Friedrichsheim) based in Frankfurt/Main, Germany, and the Chinese Scholarship Council (CSC).

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest to declare.

References

  1. 1.
    Garrat AC. Electrophysiology and electrotherapeutics. Boston: Ticknor and Fields; 1860.Google Scholar
  2. 2.
    Kuzyk PR, Schemitsch EH. The science of electrical stimulation therapy for fracture healing. Indian J Orthop. 2009;43(2):127–31.  https://doi.org/10.4103/0019-5413.50846.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chalidis B, Sachinis N, Assiotis A, Maccauro G, Graziani F. Stimulation of bone formation and fracture healing with pulsed electromagnetic fields: biologic responses and clinical implications. Int J Immunopathol Pharmacol. 2011;24:17–20.CrossRefPubMedGoogle Scholar
  4. 4.
    Aaron RK, Boyan BD, Ciombor DM, Schwartz Z, Simon BJ. Stimulation of growth factor synthesis by electric and electromagnetic fields [review]. Clin Orthop. 2004;419:30–7.CrossRefGoogle Scholar
  5. 5.
    Simonis RB, Parnell EJ, Ray PS, Peacock JL. Electrical treatment of tibial non-union: a prospective, randomised, double-blind trial. Injury. 2003;34:357–62.CrossRefPubMedGoogle Scholar
  6. 6.
    Andersen T, Christensen FB, Ernst C, Fruensgaard S, Østergaard J, Andersen JL, et al. The effect of electrical stimulation on lumbar spinal fusion in older patients: a randomized, controlled, multi-center trial: part 1: functional outcome. Spine. 2009;34:2241–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Steinberg ME, Brighton CT, Hayken GD, Tooze SE, Steinberg DR. Early results in the treatment of avascular necrosis of the femoral head with electrical stimulation. Orthop Clin N Am. 1984;15:163–75.Google Scholar
  8. 8.
    Sharrard WJ, Sutcliffe ML, Robson MJ, Maceachern AG. The treatment of fibrous non-union of fractures by pulsing electromagnetic stimulation. J Bone Jt Surg Br. 1982;64:189–93.CrossRefGoogle Scholar
  9. 9.
    Brighton C, Shaman P, Heppenstall R. Tibial nonunion treated with direct current, capacitive coupling, or bone graft. Clin Orthop. 1995;321:223–34.Google Scholar
  10. 10.
    Borsalino G, Bagnacani M, Bettati E, et al. Electrical stimulation of human femoral intertrochanteric osteotomies. Clin Orthop. 1988;237:256–63.Google Scholar
  11. 11.
    Bassett CA, Mitchell SN, Schink MM. Treatment of therapeutically resistant non-unions with bone grafts and pulsing electromagnetic fields. J Bone Jt Surg Am. 1982;64:1214–20.CrossRefGoogle Scholar
  12. 12.
    Steinberg ME, Brighton CT, Corces A, Hayken GD, Steinberg DR, Strafford B, et al. Osteonecrosis of the femoral head. Results of core decompression and grafting with and without electrical stimulation. Clin Orthop Relat Res. 1989;249:199–208.Google Scholar
  13. 13.
    Tai G, Tai M, Zhao M. Electrically stimulated cell migration and its contribution to wound healing. Burns Trauma. 2018;6:20.  https://doi.org/10.1186/s41038-018-0123-2.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yuan X, Arkonac DE, Chao PG, Vunjak-Novakovic G. Electrical stimulation enhances cell migration and integrative repair in the meniscus. Sci Rep. 2014;4:3674.  https://doi.org/10.1038/srep03674.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ercan B, Webster TJ. Greater osteoblast proliferation on anodized nanotubular titanium upon electrical stimulation. Int J Nanomed. 2008;3(4):477–85.Google Scholar
  16. 16.
    Guo BS, Cheung KK, Yeung SS, Zhang BT, Yeung EW. Electrical stimulation influences satellite cell proliferation and apoptosis in unloading-induced muscle atrophy in mice. PLoS One. 2012;7(1):e30348.  https://doi.org/10.1371/journal.pone.0030348.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Serena E, Figallo E, Tandon N, Cannizzaro C, Gerecht S, Elvassore N, et al. Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Exp Cell Res. 2009;315(20):3611–9.  https://doi.org/10.1016/j.yexcr.2009.08.015.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yamada A, Gaja N, Ohya S, Muraki K, Narita H, Ohwada T, et al. Usefulness and limitation of DiBAC4(3), a voltage-sensitive fluorescent dye, for the measurement of membrane potentials regulated by recombinant large conductance Ca2+-activated K+ channels in HEK293 cells. Jpn J Pharmacol. 2001;86(3):342–50.CrossRefPubMedGoogle Scholar
  19. 19.
    Eischen-Loges M, Oliveira KMC, Bhavsar MB, Barker JH, Leppik L. Pretreating mesenchymal stem cells with electrical stimulation causes sustained long-lasting pro-osteogenic effects. PeerJ. 2018;6:e4959.  https://doi.org/10.7717/peerj.4959.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mobini S, Leppik L, Parameswaran VT, Barker JH. In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells. PeerJ. 2017;12(5):e2821.  https://doi.org/10.7717/peerj.2821.CrossRefGoogle Scholar
  21. 21.
    Behari J. Effect of electrical stimulation in mineralization and collagen enrichment of osteoporotic rat bones. In: 2008 International conference on recent advances in microwave theory and applications 2008.Google Scholar
  22. 22.
    Durigan JLQ, Peviani SM, Delfino GB, De Souza Jose RJ, Parra T, Salvini TF. Neuromuscular electrical stimulation induces beneficial adaptations in the extracellular matrix of quadriceps muscle after anterior cruciate ligament transection of rats. Am J Phys Med Rehabil. 2014;93(11):948–61.  https://doi.org/10.1097/PHM.0000000000000110.CrossRefPubMedGoogle Scholar
  23. 23.
    George PM, Bliss TM, Hua T, Lee A, Oh B, Levinson A, et al. Electrical preconditioning of stem cells with a conductive polymer scaffold enhances stroke recovery. Biomaterials. 2017;142:31–40.  https://doi.org/10.1016/j.biomaterials.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Leppik LP, Froemel D, Slavici A, Ovadia ZN, Hudak L, Henrich D, et al. Effects of electrical stimulation on rat limb regeneration, a new look at an old model. Sci Rep. 2015;17(5):18353.  https://doi.org/10.1038/srep18353.CrossRefGoogle Scholar
  25. 25.
    Leppik L, Zhihua H, Mobini S, Parameswaran VT, Eischen-Loges M, Slavici A, et al. Combining electrical stimulation and tissue engineering to treat large bone defects in a rat model. Sci Rep. 2018;8(1):6307.  https://doi.org/10.1038/s41598-018-24892-0.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Brochet F, Weber J. LinkedIn Corporation. Harvard Business School Case 112–006; 2012.Google Scholar
  27. 27.
    Tejano N, Puno R, Ignacio JM. The use of implantable direct current stimulation in multilevel spinal fusion without instrumentation. Spine. 1996;21(16):1904–8.  https://doi.org/10.1097/00007632-199608150-00015.CrossRefPubMedGoogle Scholar
  28. 28.
    Sharrard WJW. A double-blind trial of pulsed electromagnetic fields for delayed union of tibial fractures. J Bone Jt Surg Br. 1990;72:347–55.CrossRefGoogle Scholar
  29. 29.
    Brighton CT. Treatment of non-union of the tibia with constant direct current. J Trauma. 1981;21:189–95.CrossRefPubMedGoogle Scholar
  30. 30.
    Gupta AK, Srivastava KP, Avasthi S. Pulsed electromagnetic stimulation in nonunion of tibial diaphyseal fractures. Indian J Orthop. 2009;43(2):156–60.  https://doi.org/10.4103/0019-5413.50850.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Spadaro JA. Electrically stimulated bone growth in animals and man. Review of the literature. Clin Orthop Relat Res. 1977;122:325–32.Google Scholar
  32. 32.
    Barker AT, Dixon RA, Sharrard WJW, Sutcliffe ML. Pulsed magnetic field therapy for tibial non-union. Interim results of a double-blind trial. Lancet. 1984;1:994–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Brighton C, Pollack S. Treatment of recalcitrant non-unions with a capacitively coupled electrical field. J Bone Joint Surg. 1985;67A:577–85.CrossRefGoogle Scholar
  34. 34.
    Kooistra BW, Jain A, Hanson BP. Electrical stimulation: nonunions. Indian J Orthop. 2009;43(2):149–55.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    EXOGEN. EXOGEN® Bone healing system shown to be most cost-effective bone stimulator. 2005.Google Scholar
  36. 36.
    Schultz M, Oremus M, Whitman C, Conway J. Cost-effectiveness of bone stimulators in the conservative treatment of stable nonunion fractures. Value Health. 2004;7:723 (International Society for Pharmacoeconomics and Outcomes Research (ISPOR)).CrossRefGoogle Scholar
  37. 37.
    Cebrián JL, Gallego P, Francés A, Sánchez P, Manrique E, Marco F, et al. Comparative study of the use of electromagnetic fields in patients with pseudoarthrosis of tibia treated by intramedullary nailing. Int Orthop. 2010;34(3):437–40.  https://doi.org/10.1007/s00264-009-0806-1.CrossRefPubMedGoogle Scholar
  38. 38.
    Abdelrahim A, Hassanein HR, Dahaba M. Effect of pulsed electromagnetic field on healing of mandibular fracture: a preliminary clinical study. J Oral Maxillofac Surg. 2011;69(6):1708–17.  https://doi.org/10.1016/j.joms.2010.10.013.CrossRefPubMedGoogle Scholar
  39. 39.
    Colson DJ, Browett JP, Fiddian NJ, Watson B. Treatment of delayed- and non-union of fractures using pulsed electromagnetic fields. J Biomed Eng. 1988;10:301–4.CrossRefPubMedGoogle Scholar
  40. 40.
    Meril AJ. Direct current stimulation of allograft in anterior and posterior lumbar interbody fusions. Spine. 1994;19:2393–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Simmons JW, Hayes MA, Christensen DK, Dwyer AP, Koullsis CS, Kimmich SJ. The effect of postoperative pulsing electromagnetic fields on lumbar fusion: an open trial phase study. Quebec, Canada: Presented at the North American Spine Society; 1989.Google Scholar
  42. 42.
    Lee K. Clinical investigation of the spinal stem system open trial phase: pseudarthrosis stratum. Las Vegas, Nevada: Presented at the annual meeting of the American Academy of Orthopaedic Surgeons; 1989.Google Scholar
  43. 43.
    Ebrahim S, Mollon B, Bance S, Busse JW, Bhandari M. Low-intensity pulsed ultrasonography versus electrical stimulation for fracture healing: a systematic review and network meta-analysis. Can J Surg. 2014;57(3):E105–18.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kertzman P, Császár NBM, Furia JP, Schmitz C. Radial extracorporeal shock wave therapy is efficient and safe in the treatment of fracture nonunions of superficial bones: a retrospective case series. J Orthop Surg Res. 2017;12(1):164.  https://doi.org/10.1186/s13018-017-0667-z.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Putnam JG, Mitchell SM, DiGiovanni RM, Stockwell EL, Edwards SG. Outcomes of unstable scaphoid nonunion with segmental defect treated with plate fixation and autogenous cancellous graft. J Hand Surg Am. 2019;44(2):160.e1–7.  https://doi.org/10.1016/j.jhsa.2018.05.023.CrossRefGoogle Scholar
  46. 46.
    Aydin N, Bezer M. The effect of an intramedullary implant with a static magnetic field on the healing of the osteotomised rabbit femur. Int Orthop. 2011;35(1):135–41.  https://doi.org/10.1007/s00264-009-0932-9.CrossRefPubMedGoogle Scholar
  47. 47.
    Barak S, Neuman M, Iezzi G, Piattelli A, Perrotti V, Gabet Y. A new device for improving dental implants anchorage: a histological and micro-computed tomography study in the rabbit. Clin Oral Implant Res. 2016;27(8):935–42.  https://doi.org/10.1111/clr.12661.CrossRefGoogle Scholar
  48. 48.
    Buzza EP, Shibli JA, Barbeiro RH, Barbosa JR. Effects of electromagnetic field on bone healing around commercially pure titanium surface: histologic and mechanical study in rabbits. Implant Dent. 2003;12:182–7.CrossRefPubMedGoogle Scholar
  49. 49.
    Fredericks DC, Piehl DJ, Baker JT, Abbott J, Nepola JV. Effects of pulsed electromagnetic field stimulation on distraction osteogenesis in the rabbit tibial leg lengthening model. J Pediatr Orthop. 2003;23:478–83.PubMedGoogle Scholar
  50. 50.
    France JC, Norman TL, Santrock RD, McGrath B, Simon BJ. The efficacy of direct current stimulation for lumbar intertransverse process fusions in an animal model. Spine. 2001;26:1002–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Gilotra M, Griffith C, Schiavone J, Nimmagadda N, Noveau J, Ludwig SC. Capacitive coupling reduces instrumentation-related infection in rabbit spines: a pilot study. Clin Orthop Relat Res. 2012;470(6):1646–51.  https://doi.org/10.1007/s11999-011-2231-1.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hu J, Qu J, Xu D, Zhang T, Qin L, Lu H. Combined application of low-intensity pulsed ultrasound and functional electrical stimulation accelerates bone-tendon junction healing in a rabbit model. J Orthop Res. 2014;32(2):204–9.  https://doi.org/10.1002/jor.22505.CrossRefPubMedGoogle Scholar
  53. 53.
    Kim J, Yang HJ, Cho TH, Lee SE, Park YD, Kim HM, et al. Enhanced regeneration of rabbit mandibular defects through a combined treatment of electrical stimulation and rhBMP-2 application. Med Biol Eng Comput. 2013;51(12):1339–48.  https://doi.org/10.1007/s11517-013-1106-x.CrossRefPubMedGoogle Scholar
  54. 54.
    Matsumoto H, Ochi M, Abiko Y, Hirose Y, Kaku T, Sakaguchi K. Pulsed electromagnetic fields promote bone formation around dental implants inserted into the femur of rabbits. Clin Oral Implant Res. 2000;11(4):354–60.CrossRefGoogle Scholar
  55. 55.
    Ottani V, Raspanti M, Martini D, Tretola G, Ruggeri A, Franchi M, et al. Electromagnetic stimulation on the bone growth using backscattered electron imaging. Micron. 2002;33:121–5.CrossRefPubMedGoogle Scholar
  56. 56.
    Rubinacci A, Black J, Brighton CT, Friedenberg ZB. Changes in bioelectric potentials on bone associated with direct current stimulation of osteogenesis. J Orthop Res. 1988;6:335–45.CrossRefPubMedGoogle Scholar
  57. 57.
    Shafer DM, Rogerson K, Norton L, Bennett J. The effect of electrical perturbation on osseointegration of titanium dental implants. J Oral Maxillofac Surg. 1995;53:1063–8.CrossRefPubMedGoogle Scholar
  58. 58.
    Shimizu E, Matsuda-Honjyo Y, Samoto H, Saito R, Nakajima Y, Nakayama Y, et al. Static magnetic fields-induced bone sialoprotein (BSP) expression is mediated through FGF2 response element and pituitary-specific transcription factor-1 motif. J Cell Biochem. 2004;91:1183–96.CrossRefPubMedGoogle Scholar
  59. 59.
    Smith R. Nagel D Effects of pulsing electromagnetic fields on bone growth and articular cartilage. Clin Orthop. 1983;181:277–82.Google Scholar
  60. 60.
    Taylor BC, French BG, Fowler TT, Russell J, Poka A. Induced membrane technique for reconstruction to manage bone loss. J Am Acad Orthop Surg. 2012;20:142–50.CrossRefPubMedGoogle Scholar
  61. 61.
    Veronesi F, Cadossi M, Giavaresi G, Martini L, Setti S, Buda R, et al. Pulsed electromagnetic fields combined with a collagenous scaffold and bone marrow concentrate enhance osteochondral regeneration: an in vivo study. BMC Musculoskelet Disord. 2015;2(16):233.  https://doi.org/10.1186/s12891-015-0683-2.CrossRefGoogle Scholar
  62. 62.
    Yonemori K, Matsunaga S, Ishidou Y, Maeda S, Yoshida H. Early effects of electrical stimulation on osteogenesis. Bone. 1996;19:173–80.CrossRefPubMedGoogle Scholar
  63. 63.
    Zimmerman M, Parsons JR, Alexander H, Weiss AB. The electrical stimulation of bone using a filamentous carbon cathode. J Biomed Mater Res. 1984;18:927–38.CrossRefPubMedGoogle Scholar
  64. 64.
    Berry JL, Geiger JM, Moran JM, Skraba JS, Greenwald AS. Use of tricalcium phosphate or electrical-stimulation to enhance the bone porous implant interface. J Biomed Mater Res. 1986;20:65–77.CrossRefPubMedGoogle Scholar
  65. 65.
    Bins-Ely LM, Cordero EB, Souza JCM, Teughels W, Benfatti CAM, Magini RS. In vivo electrical application on titanium implants stimulating bone formation. J Periodontal Res. 2017;52(3):479–84.  https://doi.org/10.1111/jre.12413.CrossRefPubMedGoogle Scholar
  66. 66.
    Branham GB, Triplett RG, Yeandle S, Vieras F. The effect of electrical current on the healing of mandibular freeze-dried bone allografts in dogs. J Oral Maxillofac Surg. 1985;43(6):403–7.CrossRefPubMedGoogle Scholar
  67. 67.
    Chakkalakal DA, Lippiello L, Shindell RL, Connolly JF. Electrophysiology of direct current stimulation of fracture healing in canine radius. IEEE Trans Biomed Eng. 1990;37:1048–58.CrossRefPubMedGoogle Scholar
  68. 68.
    Colella SM, Miller AG, Stang RG, Stoebe TG, Spengler DM. Fixation of porous titanium implants in cortical bone enhanced by electrical stimulation. J Biomed Mater Res. 1981;15:37–46.CrossRefPubMedGoogle Scholar
  69. 69.
    Connolly JF, Henry H, Jardon J. The Electrical Enhancement of Periosteal Proliferation in Normal and Delayed Fracture Healing. Clin Orthop. 1977;124:97–105.Google Scholar
  70. 70.
    Dejardin LM, Kahanovitz N, Arnoczky SP, Simon BJ. The effect of varied electrical current densities on lumbar spinal fusions in dogs. Spine J. 2001;1:341–7.CrossRefPubMedGoogle Scholar
  71. 71.
    Doyle ND. Rehabilitation of fractures in small animals: maximize outcomes, minimize complications. Clin Tech Small Anim Pract. 2004;19:180–91.CrossRefPubMedGoogle Scholar
  72. 72.
    Rodriguez Fuentes AE, Marcondes de Souza JP, Valeri V, Mascarenhas S. Experimental model of electric stimulation of pseudarthrosis healing. Clin Orthop. 1984;183:267–75.Google Scholar
  73. 73.
    Inoue N, Ohnishi I, Chen D, Deitz LW, Schwardt JD, Chao EYS. Effect of pulsed electromagnetic fields (PEMF) on late-phase osteotomy gap healing in a canine tibial model. J Orthop Res. 2002;20:1106–14.CrossRefPubMedGoogle Scholar
  74. 74.
    Jacobs JD, Norton LA. Electrical stimulation of osteogenesis in periodontal defects. Clin Orthop. 1977;124:41–52.Google Scholar
  75. 75.
    Jacobs RR, Luethi U, Dueland RT, Perren SM. Electrical stimulation of experimental nonunions. Clin Orthop Relat Res. 1981;161:146–53.Google Scholar
  76. 76.
    Kahanovitz N, Arnoczky S, Nemzek J, Shores A. The effect of EMF pulsing on posterior lumbar spinal fusion in dogs. Spine. 1994;19:705–9.CrossRefPubMedGoogle Scholar
  77. 77.
    Lindsey RW, Grobman J, Leggon RE, Panjabi M, Friedlaender GE. Effects of bone graft and electrical stimulation on the strength of healing bony defects in dogs. Clin Orthop. 1987;222:275–80.Google Scholar
  78. 78.
    Modarresi J, Aghili H, Karandish M, Jalali B, Zahir ST. Effect of direct electric current on parietal bone osteogenesis. J Craniofac Surg. 2012;23(6):1607–9.  https://doi.org/10.1097/SCS.0b013e3182575423.CrossRefPubMedGoogle Scholar
  79. 79.
    Ortman LF, Casey DM, Deers M. Bioelectric stimulation and residual ridge resorption. J Prosthet Dent. 1992;67:67–71.CrossRefPubMedGoogle Scholar
  80. 80.
    Dev MED, Org ART, Ingrowth T, Recum V, Al PET. ABSTRACT The effect of electrical stimulation on the interfacial strength of the porous polymethylmethacrylate implant/oral tissue union and the amount. Department of Interdisciplinary Studies, College of Engineering Clemson University Clemson, 1978;6:291–303.Google Scholar
  81. 81.
    Cundy PJ, Paterson DC. A ten year review of treatment of delayed union and nonunion with an implanted bone growth stimulator. Clin Orthop Relat Res. 1988;259:216–22.Google Scholar
  82. 82.
    Paterson DC, Hillier TM, Carter RF, Ludbrook J, Maxwell GM, Savage JP. Experimental delayed union of the dog tibia and its use in assessing the effect of an electrical bone growth stimulator. Clin Orthop. 1977;128:340–50.Google Scholar
  83. 83.
    Paterson DC, Carter RF, Tilbury RF, Ludbrook J. Savage JP The effects of varying current levels of electrical stimulation. Clin Ortho Relat Res. 1982;169:303–12.Google Scholar
  84. 84.
    Pepper JR, Herbert MA, Anderson JR, Bobechko WP. Effect of capacitive coupled electrical stimulation on regenerate bone. J Orthop Res. 1996;14:296–302.CrossRefPubMedGoogle Scholar
  85. 85.
    Schutzer SF, Jasty M, Bragdon CR, Harrigan TP, Harris WH. A double-blind study on the effects of a capacitively coupled electrical field on bone ingrowth into porous-surfaced canine total hip prosthesis. Clin Orthop Rel Res. 1990;260:297–304.CrossRefGoogle Scholar
  86. 86.
    Shayesteh YS, Eslami B, Dehghan MM, Vaziri H, Alikhassi M, Mangoli A, et al. The effect of a constant electrical field on osseointegration after immediate implantation in dog mandibles: a preliminary study: basic science research. J Prosthodont. 2007;16:337–42.CrossRefPubMedGoogle Scholar
  87. 87.
    Shokry M. Preliminary study on the use of a silver oxide watch battery (1.5 V) for electrical enhancement of bone healing. Vet Res Commun. 1985;9:245–50.CrossRefPubMedGoogle Scholar
  88. 88.
    Srivastava KP, Lahiri V, Khare A. Chandra H Histomorphologic evidence of fracture healing after direct electrical stimulation in dogs. J Trauma. 1982;22(9):785–6.CrossRefPubMedGoogle Scholar
  89. 89.
    Atalay Y, Gunes N, Guner MD, Akpolat V, Celik MS, Guner R. Pentoxifylline and electromagnetic field improved bone fracture healing in rats. Drug Des Dev Ther. 2015;9(9):5195–201.  https://doi.org/10.2147/DDDT.S89669.CrossRefGoogle Scholar
  90. 90.
    Brighton CT, Tadduni GT, Goll SR, Pollack SR. Treatment of denervation/disuse osteoporosis in the rat with a capacitively coupled electrical signal: effects on bone formation and bone resorption. J Orthop Res. 1988;6:676–84.CrossRefPubMedGoogle Scholar
  91. 91.
    Giannunzio GA, Speerli RC, Guglielmotti MB. Electrical field effect on peri-implant osteogenesis: a histologic and histomorphometric study. Implant Dent. 2008;17:118–26.CrossRefPubMedGoogle Scholar
  92. 92.
    Guizzardi S, Silvestre M, Govoni P, Scandroglio R. Pulsed electromagnetic field stimulation on posterior spinal fusions: a histological study in rats. J Spinal Disord. 1994;7:36–40.CrossRefPubMedGoogle Scholar
  93. 93.
    Van Der Jagt OP, Van Der Linden JC, Waarsing JH, Verhaar JAN, Weinans H. Systemic treatment with pulsed electromagnetic fields do not affect bone microarchitecture in osteoporotic rats. Int Orthop. 2012;36(7):1501–6.  https://doi.org/10.1007/s00264-011-1471-8.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Lirani-Galvão APR, Bergamaschi CT, Silva OL, Lazaretti-Castro M. Electrical field stimulation improves bone mineral density in ovariectomized rats. Braz J Med Biol Res. 2006;39:1501–5.CrossRefPubMedGoogle Scholar
  95. 95.
    Manjhi J, Mathur R, Behari J. Effect of low level capacitive-coupled pulsed electric field stimulation on mineral profile of weight-bearing bones in ovariectomized rats. J Biomed Mater Res B Appl Biomater. 2010;92(1):189–95.  https://doi.org/10.1002/jbm.b.31505.CrossRefPubMedGoogle Scholar
  96. 96.
    Marino AA, Cullen JM, Reichmanis M, Becker RO. Fracture healing in rats exposed to extremely low frequency electric fields. Clin Orthop 1979;145:239–44.Google Scholar
  97. 97.
    Medalha CC, Amorim BO, Ferreira JM, Oliveira P, Pereira RMR, Tim C, et al. Comparison of the effects of electrical field stimulation and low-level laser therapy on bone loss in spinal cord-injured rats. Photomed Laser Surg. 2010;28(5):669–74.  https://doi.org/10.1089/pho.2009.2691.CrossRefPubMedGoogle Scholar
  98. 98.
    Nakajima M, Inoue M, Hojo T, Inoue N, Tanaka K, Takatori R, et al. Effect of electroacupuncture on the healing process of tibia fracture in a rat model: a randomised controlled trial. Acupunct Med. 2010;28:140–3.CrossRefPubMedGoogle Scholar
  99. 99.
    Puricelli E, Dutra NB, Ponzoni D. Histological evaluation of the influence of magnetic field application in autogenous bone grafts in rats. Head Face Med. 2009;5:1.  https://doi.org/10.1186/1746-160X-5-1.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Shen WW, Zhao JH. Pulsed electromagnetic fields stimulation affects BMD and local factor production of rats with disuse osteoporosis. Bioelectromagnetics. 2010;31(2):113–9.  https://doi.org/10.1002/bem.20535.CrossRefPubMedGoogle Scholar
  101. 101.
    Spadaro JA, Becker RO. Function of implanted cathodes in electrode-induced bone growth. Med Biol Eng Comput. 1979;17:769–75.CrossRefPubMedGoogle Scholar
  102. 102.
    Takano-Yamamoto T, Kawakami M, Sakuda M. Effect of a pulsing electromagnetic field on demineralized bone-matrix-induced bone formation in a bony defect in the premaxilla of rats. J Dent Res. 1992;71:1920–5.CrossRefPubMedGoogle Scholar
  103. 103.
    Tomofuji T, Ekuni D, Azuma T, Irie K, Endo Y, Kasuyama K, et al. Effects of electrical stimulation on periodontal tissue remodeling in rats. J Periodontal Res. 2013;48(2):177–83.  https://doi.org/10.1111/j.1600-0765.2012.01518.x.CrossRefPubMedGoogle Scholar
  104. 104.
    Uysal T, Amasyali M, Olmez H, Karslioglu Y, Gunhan O. Stimulation of bone formation by direct electrical current in an orthopedically expanded suture in the rat. Korean J Orthod. 2010;40:106–14.CrossRefGoogle Scholar
  105. 105.
    Yang BY, Huang TC, Chen YS, Yao CH. Reconstructive effects of percutaneous electrical stimulation combined with GGT composite on large bone defect in rats. Evid Based Complement Altern Med. 2013.  https://doi.org/10.1155/2013/607201.CrossRefGoogle Scholar
  106. 106.
    Yu K, Yoon YS, Jeon J. The effect of electrical stimulation combined with foam dressing on ulcer healing in rats with spinal cord injury. Adv Skin Wound Care. 2015;28(11):495–502.  https://doi.org/10.1097/01.ASW.0000470553.85257.84.CrossRefPubMedGoogle Scholar
  107. 107.
    Zamarioli A, Battaglino RA, Morse LR, Sudhakar S, Maranho DAC, Okubo R, et al. Standing frame and electrical stimulation therapies partially preserve bone strength in a rodent model of acute spinal cord injury. Am J Phys Med Rehabil. 2013;92(5):402–10.  https://doi.org/10.1097/PHM.0b013e318287697c.CrossRefPubMedGoogle Scholar
  108. 108.
    Benazzo F, Cadossi M, Cavani F, Fini M, Giavaresi G, Setti S, et al. Cartilage repair with osteochondral autografts in sheep: effect of biophysical stimulation with pulsed electromagnetic fields. J Orthop Res. 2008;26(5):631–42.  https://doi.org/10.1002/jor.20530.CrossRefPubMedGoogle Scholar
  109. 109.
    Dergin G, Aktas M, Gürsoy B, Kürkçü M, Devecioğlu Y, Benlidayı E. Direct current electric stimulation in implant osseointegration: an experimental animal study with sheep. J Oral Implantol. 2013;39(6):671–9.  https://doi.org/10.1563/AAID-JOI-D-10-00172.CrossRefPubMedGoogle Scholar
  110. 110.
    Flouty OE, Oya H, Kawasaki H, Reddy CG, Fredericks DC, Gibson-Corley KN, et al. Intracranial somatosensory responses with direct spinal cord stimulation in anesthetized sheep. PLoS One. 2013;8(2):e56266.  https://doi.org/10.1371/journal.pone.0056266.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    El-Hakim IE, Azim AM, El-Hassan MF, Maree SM. Preliminary investigation into the effects of electrical stimulation on mandibular distraction osteogenesis in goats. Int J Oral Maxillofac Surg. 2004;33(1):42–7.CrossRefPubMedGoogle Scholar
  112. 112.
    Law HT, Annan I, McCarthy ID, Hughes SP, Stead AC, Camburn MA, et al. The effect of induced electric currents on bone after experimental osteotomy in sheep. J Bone Jt Surg Br. 1985;67:463–9.CrossRefGoogle Scholar
  113. 113.
    Muttini A, Abate M, Bernabò N, Cavani F, Mingozzi R, Tosi U, et al. Effect of electric current stimulation in combination with external fixator on bone healing in a sheep fracture model. Vet Ital. 2014;50(4):249–57.  https://doi.org/10.12834/VetIt.271.963.CrossRefPubMedGoogle Scholar
  114. 114.
    Toth JM, Seim HB, Schwardt JD, Humphrey WB, Wallskog JA, Turner AS. Direct current electrical stimulation increases the fusion rate of spinal fusion cages. Spine. 2000;25:2580–7.CrossRefPubMedGoogle Scholar
  115. 115.
    Canè V, Botti P, Farneti D, Soana S. Electromagnetic stimulation of bone repair: a histomorphometric study. J Orthop Res. 1991;9:908–17.CrossRefPubMedGoogle Scholar
  116. 116.
    Kold SE, Hickman J. Preliminary study of quantitative aspects and the effect of pulsed electromagnetic field treatment on the incorporation of equine cancellous bone graft. Equine Vet J. 1987;19(2):120–4.CrossRefPubMedGoogle Scholar
  117. 117.
    Sanders-Shamis M, Bramlage LR, Weisbrode SE, Gabel AA. A preliminary investigation of the effect of selected electromagnetic field devices on healing of cannon bone osteotomies in horses. Equine Vet J. 1989;21:201–5.CrossRefPubMedGoogle Scholar
  118. 118.
    Abeed RI, Naseer M, Abel EW. Capacitively coupled electrical stimulation treatment: results from patients with failed long bone fracture unions. J Orthop Trauma. 1998;12:510–3.CrossRefPubMedGoogle Scholar
  119. 119.
    Adie S, Harris I, Naylor J. Pulsed electromagnetic field stimulation for acute tibial shaft fractures: a multicenter, double-blind, randomized trial. J Bone Jt Surg Am. 2011;93(17):1569–76.  https://doi.org/10.2106/JBJS.J.00869.CrossRefGoogle Scholar
  120. 120.
    Andersen T, Christensen FB, Egund N, Ernst C, Fruensgaard S, Ostergaard J, et al. The effect of electrical stimulation on lumbar spinal fusion in older patients: a randomized, controlled, multi-center trial: part 2: fusion rates. Spine. 2009;34:2248–53.CrossRefPubMedGoogle Scholar
  121. 121.
    Andersen T, Christensen FB, Langdahl BL, Ernst C, Fruensgaard S, Østergaard J, et al. Fusion mass bone quality after uninstrumented spinal fusion in older patients. Eur Spine J. 2010;19(12):2200–8.  https://doi.org/10.1007/s00586-010-1373-2.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Assiotis A, Sachinis NP, Chalidis BE. Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions A prospective clinical study and review of the literature. J Orthop Surg Res. 2012;7:24.  https://doi.org/10.1186/1749-799x-7-24.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Bassett CA, Mitchell SN, Gaston SR. Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J Bone Jt Surg Am. 1981;63:511–23.CrossRefGoogle Scholar
  124. 124.
    Beck BR, Matheson GO, Bergman G, Norling T, Fredericson M, Hoffman AR, et al. Do capacitively coupled electric fields accelerate tibial stress fracture healing? A randomized controlled trial. Am J Sports Med. 2008;36(3):545–53.CrossRefPubMedGoogle Scholar
  125. 125.
    Benazzo F, Mosconi M, Beccarisi G, Galli U. Use of capacitive coupled electric fields in stress fractures in athletes. Clin Orthop Relat Res. 1995;310:145–9.Google Scholar
  126. 126.
    Boyette MY, Herrera-Soto JA. Treatment of delayed and nonunited fractures and osteotomies with pulsed electromagnetic field in children and adolescents. Orthopedics. 2012;35(7):e1051–5.  https://doi.org/10.3928/01477447-20120621-20.CrossRefPubMedGoogle Scholar
  127. 127.
    Bronner S, Novella T, Becica L. Management of a delayed-union sesamoid fracture in a dancer. J Orthop Sports Phys Ther. 2007;37:529–40.CrossRefPubMedGoogle Scholar
  128. 128.
    Capanna R, Donati D, Masetti C, Manfrini M, Panozzo A, Cadossi R, et al. Effect of electromagnetic fields on patients undergoing massive bone graft following bone tumor resection. A double blind study. Clin Orthop Rel Res. 1994;306:213–21.Google Scholar
  129. 129.
    de Haas WG, Watson J, Morrison DM. Non-invasive treatment of ununited fractures of the tibia using electrical stimulation. J Bone Jt Surg Br. 1980;62:465–70.CrossRefGoogle Scholar
  130. 130.
    Donley BG, Ward DM. Implantable electrical stimulation in high-risk hindfoot fusions. Foot Ankle Int. 2002;23:13–8.CrossRefPubMedGoogle Scholar
  131. 131.
    Dunn A, Rush G. Electrical stimulation in treatment of delayed union and nonunion of fractures and osteotomies. South Med J. 1984;77:1530–4.CrossRefPubMedGoogle Scholar
  132. 132.
    Foley K, Mroz T, Arnold P. Randomized, prospective, and controlled clinical trial of pulsed electromagnetic field stimulation for cervical fusion. Spine J. 2008;8:436–42.CrossRefPubMedGoogle Scholar
  133. 133.
    Fourie JA, Bowerbank P. Stimulation of bone healing in new fractures of the tibial shaft using interferential currents. Physiother Res Int. 1997;2:255–68.CrossRefPubMedGoogle Scholar
  134. 134.
    Freedman LS. Pulsating electromagnetic fields in the treatment of delayed and non-union of fractures: results from a district general hospital. Injury. 1985;16:315–7.CrossRefPubMedGoogle Scholar
  135. 135.
    Garland D, Holt P, Harrington JT, Caldwell J, Zizic T, Cholewczynski J. A 3-month, randomized, double-blind, placebo-controlled study to evaluate the safety and efficacy of a highly optimized, capacitively coupled, pulsed electrical stimulator in patients with osteoarthritis of the knee. Osteoarthr Cartil. 2007;15(6):630–7.CrossRefPubMedGoogle Scholar
  136. 136.
    Goodwin C, Brighton C, Guyer R, Johnson J, Light K, Yuan H. A double blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusion. Spine. 1999;24:1349–57.CrossRefPubMedGoogle Scholar
  137. 137.
    Hanft JR, Goggin JP, Landsman A, Surprenant M. The role of combined magnetic field bone growth stimulation as an adjunct in the treatment of neuroarthropathy/Charcot joint: an expanded pilot study. J Foot Ankle Surg. 1998;37:510–5.CrossRefPubMedGoogle Scholar
  138. 138.
    Hannemann P, Göttgens KW, van Wely BJ, Kolkman KA, Werre AJ, Poeze M, et al. Pulsed electromagnetic fields in the treatment of fresh scaphoid fractures. A multicenter, prospective, double blind, placebo controlled, randomized trial. BMC Musculoskelet Disord. 2011;12:90.  https://doi.org/10.1186/1471-2474-12-90.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Hannemann PFW, Göttgens KWA, van Wely BJ, Kolkman KA, Werre AJ, Poeze M, et al. The clinical and radiological outcome of pulsed electromagnetic field treatment for acute scaphoid fractures: a randomised double-blind placebo-controlled multicentre trial. J Bone Jt Surg Br. 2012;94(10):1403–8.CrossRefGoogle Scholar
  140. 140.
    Holmes GB. Treatment of delayed unions and nonunions of the proximal fifth metatarsal with pulsed electromagnetic fields. Foot Ankle Int. 1994;15:552–6.CrossRefPubMedGoogle Scholar
  141. 141.
    Ito H, Shirai Y. The efficacy of ununited tibial fracture treatment using pulsing electromagnetic fields: relation to biological activity on nonunion bone ends. J Nippon Med Sch. 2001;68(2):149–53.CrossRefPubMedGoogle Scholar
  142. 142.
    Itoh S, Ohta T, Sekino Y, Yukawa Y, Shinomiya K. Treatment of distal radius fractures with a wrist-bridging external fixation: the value of alternating electric current stimulation. J Hand Surg Eur. 2008;33(5):605–8.  https://doi.org/10.1177/1753193408092253.CrossRefGoogle Scholar
  143. 143.
    Jenis L, Howard S, Rebecca S, Brett Y. Prospective comparison of the effect of direct current electrical stimulation and pulsed electromagnetic fields on instrumented posteolateral lumbar arthrodesis. Spinal Disord. 2000;13:290–6.CrossRefGoogle Scholar
  144. 144.
    Jorgensen TE. Electrical stimulation of human fracture healing by means of a slow pulsating, asymmetrical direct current. Clin Orthop Rel R. 1977;124:127.Google Scholar
  145. 145.
    Kahn J. Transcutaneous electrical nerve stimulation for nonunited fractures; a clinical report. Phys Ther. 1982;62:840–4.CrossRefPubMedGoogle Scholar
  146. 146.
    Kane WJ. Direct current electrical bone growth stimulation for spinal fusion. Spine. 1988;13:363–5.CrossRefPubMedGoogle Scholar
  147. 147.
    Kucharzyk D. A controlled prospective outcome study of implantable electrical stimulation with spinal instrumentation in a high risk spinal fusion population. Spine. 1999;24:465–68.CrossRefPubMedGoogle Scholar
  148. 148.
    Lazovic M, Kocic M, Dimitrijevic L, Stankovic I, Spalevic M, Ciric T. Pulsed electromagnetic field during cast immobilization in postmenopausal women with Colles’ fracture. Srp Arh Celok Lek. 2012;140(9–10):619–24.CrossRefPubMedGoogle Scholar
  149. 149.
    Linovitz R, Pathria M, Bernhardt M, Green D, Law M, McGuire R, et al. Combined magnetic fields accelerate and increase spine fusion: a double-blind, randomized, placebo controlled study. Spine. 2002;27:1383–9.CrossRefPubMedGoogle Scholar
  150. 150.
    Livesley PJ, Mugglestone A, Whitton J. Electrotherapy and the management of minimally displaced fracture of the neck of the humerus. Injury. 1992;23:323–6.CrossRefPubMedGoogle Scholar
  151. 151.
    Madronero A, Pitillas I, Manso FJ. Pulsed electromagnetic field treatment failure in radius non-united fracture healing. J Biomed Eng. 1988;10:463–6.CrossRefPubMedGoogle Scholar
  152. 152.
    Mammi GI, Rocchi R, Cadossi R, et al. The electrical stimulation of tibial osteotomies: A double-blind study. Clin Orthop. 1993;288:246–53.Google Scholar
  153. 153.
    Marks RA. Spine fusion for discogenic low back pain: outcomes in patients treated with or without pulsed electromagnetic field stimulation. Adv Ther. 2000;17:57–67.CrossRefPubMedGoogle Scholar
  154. 154.
    Martinez-Rondanelli A, Martinez JP, Moncada ME, Manzi E, Pinedo CR, Cadavid H. Electromagnetic stimulation as coadjuvant in the healing of diaphyseal femoral fractures: a randomized controlled trial. Colomb Med (Cali). 2014;45(2):67–71.Google Scholar
  155. 155.
    Massari L, Fini M, Cadossi R. Biophysical stimulation with pulsed electromagnetic fields in osteonecrosis of the femoral head. J Bone Jt Surg Am. 2006;88:56–60.Google Scholar
  156. 156.
    Masureik C, Eriksson C. Preliminary clinical evaluation of the effect of small electrical currents on the healing of jaw fractures. Clin Orthop Relat R. 1977;124:84–91.Google Scholar
  157. 157.
    Meskens M, Stuyck J, Mulier J. Treatment of delayed union and nonunion of the tibia by pulsed electromagnetic fields. Bull Hosp Jt Dis Orthop Inst. 1988;48:170–5.PubMedGoogle Scholar
  158. 158.
    Paterson D, Simonis RB. Electrical stimulation in the treatment of congenital pseudoarthrosis of the tibia. J Bone Jt Surg Br. 1985;67:454–62.CrossRefGoogle Scholar
  159. 159.
    Punt BJ, Den Hoed PT, Fontijne WPJ. Pulsed electromagnetic fields in the treatment of nonunion. Eur J Orthop Surg Traumatol. 2008;18:127–33.CrossRefGoogle Scholar
  160. 160.
    Reilingh ML, van Bergen CJA, Gerards RM, van Eekeren IC, de Haan RJ, Sierevelt IN, et al. Effects of pulsed electromagnetic fields on return to sports after arthroscopic debridement and microfracture of osteochondral talar defects: a randomized, double-blind, placebo-controlled, multicenter trial. Am J Sports Med. 2016;44(5):1292–300.  https://doi.org/10.1177/0363546515626544.CrossRefPubMedGoogle Scholar
  161. 161.
    Rogozinski A, Rogozinski C. Efficacy of implanted bone growth stimulation in instrumented lumbosacral spinal fusion. Spine. 1996;21:2479–483.CrossRefPubMedGoogle Scholar
  162. 162.
    Saltzman C, Lightfoot A, Amendola A. PEMF as treatment for delayed healing of foot and ankle arthrodesis. Foot Ankle Int. 2004;25:771–3.CrossRefPubMedGoogle Scholar
  163. 163.
    Scott G, King JB. A prospective, double-blind trial of electrical capacitive coupling in the treatment of non-union of long bones. J Bone Jt Surg Am. 1994;76:820–6.CrossRefGoogle Scholar
  164. 164.
    Shi H, Xiong J, Chen Y, Wang J, Qiu X, Wang Y, et al. Early application of pulsed electromagnetic field in the treatment of postoperative delayed union of long-bone fractures: a prospective randomized controlled study. BMC Musculoskelet Disord. 2013;14:35.  https://doi.org/10.1186/1471-2474-14-35.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Simmons JW. Treatment of failed posterior lumbar interbody fusion (PLIF) of the spine with pulsing electromagnetic fields. Clin Orthop Relat Res. 1985;183:127.Google Scholar
  166. 166.
    Simmons JW, Mooney V, Thacker I. Pseudarthrosis after lumbar spine fusion: nonoperative salvage with pulsed electromagnetic fields. Am J Orthop. 2004;33:27–30.PubMedGoogle Scholar
  167. 167.
    Streit A, Watson BC, Granata JD, Philbin TM, Lin H-N, O’Connor JP, et al. Effect on clinical outcome and growth factor synthesis with adjunctive use of pulsed electromagnetic fields for fifth metatarsal nonunion fracture: a double-blind randomized study. Foot Ankle Int. 2016;37(9):919–23.  https://doi.org/10.1177/1071100716652621.CrossRefPubMedGoogle Scholar
  168. 168.
    Steinberg ME, Brighton CT, Bands RE, Hartman KM. Capacitive coupling as an adjunctive treatment for avascular necrosis. Clin Orthop Relat Res. 1990;261:11–8.Google Scholar
  169. 169.
    van Bergen CJA, Blankevoort L, de Haan RJ, Sierevelt IN, Meuffels DE, d’Hooghe PRN, et al. Pulsed electromagnetic fields after arthroscopic treatment for osteochondral defects of the talus: double-blind randomized controlled multicenter trial. BMC Musculoskelet Disord. 2009;10:83.  https://doi.org/10.1186/1471-2474-10-83.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Wahlstrom O, Knutsson H. A device for generation of electromagnetic fields of extremely low frequency. J Biomed Eng. 1984;6:293–6.CrossRefPubMedGoogle Scholar
  171. 171.
    Welch WC, Willis SL, Gerszten PC. Implantable direct current stimulation in para-axial cervical arthrodesis. Adv Ther. 2004;21:389–400.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Frankfurt Initiative for Regenerative Medicine, Experimental Trauma and Orthopedic SurgeryJ.W. Goethe-University, Friedrichsheim gGmbHFrankfurt am MainGermany
  2. 2.Department of Orthopedics and RehabilitationUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations