A biomechanical comparison of three fixation techniques in osteoporotic reverse oblique intertrochanteric femur fracture with fragmented lateral cortex

  • Gökhan Polat
  • Turgut Akgül
  • Mehmet Ekinci
  • Serkan BayramEmail author
Original Article



The treatment of the reverse oblique osteoporotic femur fractures is still problematic and can be complicated especially that are accompanied by a fragmented lateral cortex.


The aim of this study was to compare three different internal fixation methods in the osteosynthesis of osteoporotic reverse oblique intertrochanteric femur fracture models with a fragmented lateral cortex.

Study design

Biomechanical experiment study.


A total of 24 osteoporotic femur models were obtained and divided into three groups [Group A: Proximal femoral nail (PFN), Group B: 95° angled blade plate (ABP), and Group C: proximal femoral anatomic locking plate (PFLP)] with each group which include eight bones. A standard fracture configuration was created as a reverse oblique intertrochanteric fracture and fixed with these implants. After fixation, all femur constructs were tested with an Instron 5800R tester (Instron, Canton, MA) in the biomechanics laboratory with axial loading and bending forces to assess axial and rotational stiffness and failure load. Displacement over 10 mm and angulation greater than 10° in the fracture line were considered as failure.


In all tests, ABP had statistically poorer results in comparison to the PFN and PFLP group. PFLP fixation had better biomechanical fixation results in comparison to the PFN group, although the results were not statistically significant.


Orthopaedic surgeons should keep in mind that lateral cortex comminution brings further instability to these reverse oblique intertrochanteric osteoporotic fractures and high rates of failure may be encountered due to this instability. PFLP fixation may be an alternative fixation method biomechanically for these instable fractures.


Fragmented lateral cortex Locking plate Osteoporotic saw bone 95° angled blade plate Proximal femoral nail 



This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22:465–75.CrossRefGoogle Scholar
  2. 2.
    Radford PJ, Needoff M, Webb JK. Aprospective randomised comparison of the dynamic hip screw and the gamma locking nail. J Bone Jt Surg Br. 1993;75(5):789–93.CrossRefGoogle Scholar
  3. 3.
    Nuber S, Schönweiss T, Rüter A. Stabilisation of unstable trochanteric femoral fractures. Dynamic hip screw (DHS) with trochanteric stabilisation plate vs. proximal femur nail (PFN). Unfallchirurg. 2003;106(1):39–47.CrossRefGoogle Scholar
  4. 4.
    Mittal R, Banerjee S. Proximal femoral fractures: principles of management and review of literature. J Clin Orthop Trauma. 2012;3(1):15–23.CrossRefGoogle Scholar
  5. 5.
    Zha GC, Chen ZL, Qi XB, Sun JY. Treatment of pertrochanteric fractures with a proximal femur locking compression plate. Injury. 2011;42(11):1294–9.CrossRefGoogle Scholar
  6. 6.
    Kokoroghiannis C, Aktselis I, Deligeorgis A, Fragkomichalos E, Papadimas D, Pappadas I. Evolving concepts of stability and intramedullary fixation of intertrochanteric fractures—a review. Injury. 2012 Jun;43(6):686–93.CrossRefGoogle Scholar
  7. 7.
    Lamb JN, Panteli M, Pneumaticos SG, Giannoudis PV. Epidemiology of pertrochanteric fractures: our institutional experience. Eur J Trauma Emerg Surg. 2014;40(3):225–32.CrossRefGoogle Scholar
  8. 8.
    Yao C, Zhang CQ, Jin DX, Chen YF. Early results of reverse less invasive stabilization system plating in treating elderly intertrochanteric fractures: a prospective study compared to proximal femoral nail. Chin Med J (Engl). 2011;124:2150–7.Google Scholar
  9. 9.
    Loizou C, Mcnamara I, Ahmed K, Pryor G, Parker M. Classification of subtrochanteric femoral fractures. Injury. 2010;41:739–45.CrossRefGoogle Scholar
  10. 10.
    Palm H, Jacobsen S, Sonne-Holm S, Gebuhr P. Integrity of the lateral femoral wall in intertrochanteric hip fractures: an important predictor of a reoperation. J Bone Jt Surg Am. 2007;89:470–47.CrossRefGoogle Scholar
  11. 11.
    van Meeteren MC, van Rief YE, Roukema JA, et al. Condylar plate fixation of subtrochanteric femoral fractures. Injury. 1996;27:715–7.CrossRefGoogle Scholar
  12. 12.
    Yoo MC, Cho YJ, Kim KI, et al. Treatment of unstable peritrochanteric femoral fractures using a 95 degrees angled blade plate. J Orthop Trauma. 2005;19:687–92.CrossRefGoogle Scholar
  13. 13.
    Sadowski C, Lübbeke A, Saudan M, Riand N, Stern R, Hoffmeyer P. Treatment of reverse oblique and transverse intertrochanteric fractures with use of an intramedullary nail or a 95 degrees screw-plate: a prospective, randomized study. J Bone Jt Surg Am. 2002;84-A(3):372–81.CrossRefGoogle Scholar
  14. 14.
    Kumar N, Kataria H, Yadav CS, Gadagoli BS, Raj R. Evaluation of proximal femoral locking plate in unstable extracapsular proximal femoral fractures: surgical technique and mid term follow up results. J Clin Orthop Trauma. 2014;5(3):137–45.CrossRefGoogle Scholar
  15. 15.
    Kraus J, Volf V, Burget F, Jindrová B. PCCP versus standard proximal femoral nail in the treatment of pertrochanteric femoral fractures. Rozhl Chir. 2009;88(8):469–74.PubMedGoogle Scholar
  16. 16.
    Streubel PN, Moustoukas M, Obremskey WT. Locked plating versus cephalomedullary nailing of unstable intertrochanteric femur fractures. Eur J Orthop Surg Traumatol. 2016;26(4):385–90.CrossRefGoogle Scholar
  17. 17.
    Johnson B, Stevenson J, Chamma R, Patel A, Rhee SJ, Lever C, Starks I, Roberts PJ. Short-term follow-up of pertrochanteric fractures treated using the proximal femoral locking plate. J Orthop Trauma. 2014;28(5):283–7.CrossRefGoogle Scholar
  18. 18.
    Collinge CA, Hymes R, Archdeacon M, Streubel P, Obremskey W, Weber T, Watson JT, Lowenberg D, Members of the Proximal Femur Working Group of the Southeast Trauma Consortium. Unstable proximal femur fractures treated with proximal femoral locking plates: a retrospective, multicenter study of 111 cases. J Orthop Trauma. 2016;30(9):489–95.CrossRefGoogle Scholar
  19. 19.
    Zderic I, Oh JK, Stoffel K, Sommer C, Helfen T, Camino G, Richards G, Nork SE, Gueorguiev B. Biomechanical analysis of the proximal femoral locking compression plate: do quality of reduction and screw orientation influence construct stability? J Orthop Trauma. 2018;32(2):67–74.CrossRefGoogle Scholar
  20. 20.
    Ma JX, Wang J, Xu WG, Yu JT, Yang Y, Ma XL. Biomechanical outcome of proximal femoral nail antirotation is superior to proximal femoral locking compression plate for reverse oblique intertrochanteric fractures: a biomechanical study of intertrochanteric fractures. Acta Orthop Traumatol Turc. 2015;49(4):426–32.PubMedGoogle Scholar
  21. 21.
    Singh AK, Narsaria N, Gupta RK. A biomechanical study comparing proximal femur nail and proximal femur locking compression plate in fixation of reverse oblique proximal femur fractures. Injury. 2017;48(10):2050–3.CrossRefGoogle Scholar
  22. 22.
    Ozkan K, Türkmen İ, Sahin A, Yildiz Y, Erturk S, Soylemez MS. A biomechanical comparison of proximal femoral nails and locking proximal anatomic femoral plates in femoral fracture fixation: a study on synthetic bones. Indian J Orthop. 2015;49(3):347–51.CrossRefGoogle Scholar
  23. 23.
    Floyd MW, France JC, Hubbard DF. Early experience with the proximal femoral locking plate. Orthopedics. 2013;36(12):1488–94.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Orthopedics and TraumatologyIstanbul University Faculty of MedicineIstanbulTurkey

Personalised recommendations