Radiological classification of retroperitoneal hematoma resulting from lumbar vertebral fracture

  • Shota Nakao
  • Kazuo IshikawaEmail author
  • Hidefumi Ono
  • Kenji Kusakabe
  • Ichiro Fujimura
  • Masato Ueno
  • Koji Idoguchi
  • Yasuaki Mizushima
  • Tetsuya Matsuoka
Original Article



Lumbar vertebral fracture (LVF) infrequently produces massive retroperitoneal hematoma (RPH). This study aimed to systematically review the clinical and radiographic characteristics of RPH resulting from LVF.


For 193 consecutive patients having LVF who underwent computed tomography (CT), demographic data, physiological conditions, and outcomes were reviewed from their medical records. Presence or absence of RPH, other bone fractures, or organ/vessel injury was evaluated in their CT images, and LVF or RPH, if present, was classified according to either the Orthopaedic Trauma Association classification or the concept of interfascial planes.


RPH resulting only or dominantly from LVF was found in 66 (34.2%) patients, whereas among the others, 64 (33.2%) had no RPH, 38 (19.7%) had RPH from other injuries, and 25 (13.0%) had RPH partly attributable to LVF. The 66 RPHs resulting only or dominantly from LVF were radiologically classified into mild subtype of minor median (n = 35), moderate subtype of lateral (n = 11), and severe subtypes of central pushing-up (n = 13) and combined (n = 7). Of the 20 patients with severe subtypes, 18 (90.0%) were in hemorrhagic shock on admission, and 6 (30.0%) were clinically diagnosed as dying due to uncontrollable RPH resulting from vertebral body fractures despite no anticoagulant medication.


LVF can directly produce massive RPH leading to hemorrhagic death. A major survey of such pathology should be conducted to establish appropriate diagnosis and treatment.


Retroperitoneal hematoma Lumbar vertebral fracture Interfascial planes Blunt trauma 



This study was supported by a research grant from the General Insurance Association of Japan (#10-1-23).

Compliance with ethical standards

Conflict of interest

Shota Nakao, Kazuo Ishikawa, Hidefumi Ono, Kenji Kusakabe, Ichiro Fujimura, Masato Ueno, Koji Idoguchi, Yasuaki Mizushima, and Tetsuya Matsuoka declare that they have no conflict of interest.

Human and animal rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This study was approved by our institutional ethics board (#28-17). Written formal consent is not required for this retrospective study.

Supplementary material

68_2018_907_MOESM1_ESM.pdf (27 kb)
Supplementary material 1 (PDF 26 KB)
68_2018_907_MOESM2_ESM.pdf (202 kb)
Supplementary material 2 (PDF 202 KB)
68_2018_907_MOESM3_ESM.pdf (102 kb)
Supplementary material 3 (PDF 101 KB)
68_2018_907_MOESM4_ESM.pdf (13 kb)
Supplementary material 4 (PDF 13 KB)
68_2018_907_MOESM5_ESM.pdf (25 kb)
Supplementary material 5 (PDF 25 KB)
68_2018_907_MOESM6_ESM.pdf (40 kb)
Supplementary material 6 (PDF 39 KB)
68_2018_907_MOESM7_ESM.pdf (179 kb)
Supplementary material 7 (PDF 178 KB)
68_2018_907_MOESM8_ESM.pdf (344 kb)
Supplementary material 8 (PDF 343 KB)
68_2018_907_MOESM9_ESM.pdf (68 kb)
Supplementary material 9 (PDF 68 KB)


  1. 1.
    Kudsk KA, Sheldon GF. Retroperitoneal hematoma. In: Blaisdell FW, Trunkey DD, editors. Abdominal trauma. New York: Thieme-Stratton, Inc; 1982. pp 279–93.Google Scholar
  2. 2.
    Meyer AA, Kudsk K, Sheldon GF. Retroperitoneal hematoma. In: Blaisdell FW, Trunkey DD, editors. Abdominal trauma, trauma management. 2nd ed. New York: Thieme-Stratton, Inc; 1993. pp 398–413.Google Scholar
  3. 3.
    Hirshberg A, Mattox KL. Top knife: the art and craft in trauma surgery. Shrewsbury: Tfm Pub. Ltd.; 2005.Google Scholar
  4. 4.
    Ishikawa K, Tohira H, Mizushima Y, Matsuoka T, Mizobata M, Yokota J. Traumatic retroperitoneal hematoma spreads through the interfascial planes. J Trauma. 2005;59:595–608.Google Scholar
  5. 5.
    Ishikawa K, Nakao S, Nakamuro M, Huang TP, Nakano H. The retroperitoneal interfascial planes: current overview and future perspectives. Acute Med Surg. 2016;3:219–29.CrossRefGoogle Scholar
  6. 6.
    Feliciano DV. Management of traumatic retroperitoneal hematoma. Ann Surg. 1990;211:109–23.CrossRefGoogle Scholar
  7. 7.
    Ishikawa K, Nakao S, Murakami G, Rodríguez-Vázquez JF, Matsuoka T, Nakamuro M, et al. Preliminary embryological study of the radiological concept of retroperitoneal interfascial planes: what are the interfascial planes? Surg Radiol Anat. 2014;36:1079–87.CrossRefGoogle Scholar
  8. 8.
    Cole WH. Retroperitoneal hemorrhage simulating acute peritonitis. JAMA. 1931;96:1472–4.CrossRefGoogle Scholar
  9. 9.
    Sclafani SJ, Florence LO, Phillips TF, Scalea TM, Glanz S, Goldstein AS, et al. Lumbar arterial injury: radiologic diagnosis and management. Radiology. 1987;165:709–14.CrossRefGoogle Scholar
  10. 10.
    Armstrong NN, Zarvon NP, Sproat IA, Schurr MJ. Lumbar artery hemorrhage: unusual cause of shock treated by angiographic embolization. J Trauma. 1997;42:544–5.CrossRefGoogle Scholar
  11. 11.
    Bawa M. Fayssoux R. Vertebrae and spinal code. In: Mattox KL, Moore EE, Feliciano DV. editors. Trauma. 7th ed. New York: McGraw-Hill; 2013. pp. 430–60.Google Scholar
  12. 12.
    Heinzelmann M, Wanner GA. Thoracolumbar spinal injuries. In: Boos N, Aebi M, editors. Spinal disorders: fundamentals of diagnosis and treatment. Berlin: Springer; 2008. pp. 883–924.CrossRefGoogle Scholar
  13. 13.
    Patten RM, Gunberg SR, Brandenburger DK. Frequency and importance of transverse process fractures in the lumbar vertebrae at helical abdominal CT in patients with trauma. Radiology. 2000;215:831–4.CrossRefGoogle Scholar
  14. 14.
    Miller CD, Blyth P, Civil ID. Lumbar transverse process fractures—a sentinel marker of abdominal organ injuries. Injury. 2000;31:773–6.CrossRefGoogle Scholar
  15. 15.
    Molmenti EP, Balfe DM, Kanterman RY, Bennett HF. Anatomy of the retroperitoneum: observations of the distribution of pathologic fluid collections. Radiology. 1996;200:95–103.CrossRefGoogle Scholar
  16. 16.
    Aizenstein RI, Wilbur AC, O’Neil HK. Interfascial and perinephric pathways in the spread of retroperitoneal disease: refined concepts based on CT observations. AJR. 1997;168:639–43.CrossRefGoogle Scholar
  17. 17.
    Balfe DM, Molmenti EP, Bennett HF. Normal abdominal and pelvic anatomy. In: Lee JK, Sagel SS, Stanley RJ, Heiken JP, editors. Computed body tomography with MRI correlation. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 1998. pp. 573–636.Google Scholar
  18. 18.
    Ishikawa K. Retroperitoneal anatomy and pathology. Surg Therapy. 2004;90:807–14. (in Japanese).Google Scholar
  19. 19.
    Ishikawa K, Idoguchi K, Tanaka H, Tohma Y, Ukai I, Watanabe H, et al. Classification of acute pancreatitis based on retroperitoneal extension: application of the concept of interfascial planes. Eur J Radiol. 2006;60:445–52.CrossRefGoogle Scholar
  20. 20.
    Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S. A comprehensive classification of thoracic and lumbar injuries. Eur Spine J. 1994;3:184–201.CrossRefGoogle Scholar
  21. 21.
    Herzog C, Ahle H, Mack MG, Maier B, Schwarz W, Zangos S, et al. Traumatic injuries of the pelvis and thoracic and lumbar spine: does thin-slice multidetector-row CT increase diagnostic accuracy? Eur Radiol. 2004;14:1751–60.Google Scholar
  22. 22.
    Marsh JL, Slongo TF, Agel J, Broderick JS, Creevey W, DeCoster TA, et al. Fracture and dislocation classification compendium—2007: Orthopaedic Trauma Association classification, database and outcomes committee. J Orthop Trauma. 2007;21(10 Suppl):S1–133.CrossRefGoogle Scholar
  23. 23.
    Gennarelli TA, Wodzin E. The Abbreviated Injury Scale 2005—Update 2008. Barrington: Association for the Advancement of Automotive Medicine; 2008.Google Scholar
  24. 24.
    Restrepo CS, Eraso A, Ocazionez D, Lemos J, Martinez S, Lemos DF. The diaphragmatic crura and retrocrural space: normal imaging appearance, variants, and pathologic conditions. Radiographics. 2008;28:1289–305.CrossRefGoogle Scholar
  25. 25.
    Maqungo S, Kimani M, Chhiba D, McCollum G, Roche S. The L5 transverse process fracture revisited. Does its presence predict the pelvis fracture instability? Injury. 2015;46:1629–30.CrossRefGoogle Scholar
  26. 26.
    Taljanovic MS, Hunter TB, Wisneski RJ, Seeger JF, Friend CJ, Schwartz SA, et al. Imaging characteristics of diffuse idiopathic skeletal hyperostosis with an emphasis on acute spinal fractures: review. AJR. 2009;193(3 Suppl):S10–9.CrossRefGoogle Scholar
  27. 27.
    Chance GQ. Note on a type of flexion fracture of the spine. Br J Radiol. 1948;21:452–3.CrossRefGoogle Scholar
  28. 28.
    Malone DL, Hess JR, Fingerhut A. Massive transfusion practices around the globe and a suggestion for a common massive transfusion protocol. J Trauma. 2006;60:S91–6.CrossRefGoogle Scholar
  29. 29.
    Stannard A, Eliason JL, Rasmussen TE. Resuscitative endovascular balloon occlusion of the aorta (REBOA) as an adjunct for hemorrhagic shock. J Trauma. 2011;71:1869–72.Google Scholar
  30. 30.
    Coimbra R, Yang J, Hoyt DB. Injuries of the abdominal aorta and inferior vena cava in association with thoracolumbar fractures: a lethal combination. J Trauma. 1996;41:533–5.CrossRefGoogle Scholar
  31. 31.
    Domenicucci M, Ramieri A, Landi A, Melone AG, Raco A, Ruggiero M, et al. Blunt abdominal aortic disruption (BAAD) in shear fracture of the adult thoraco-lumbar spine: case report and literature review. Eur Spine J. 2011;20(Suppl 2):S314–9.CrossRefGoogle Scholar
  32. 32.
    Groves CJ, Cassar-Pullicino VN, Tins BJ, Tyrrell PN, McCall IW. Chance-type flexion-distraction injuries in the thoracolumbar spine: MR imaging characteristics. Radiology. 2005;236:601–8.CrossRefGoogle Scholar
  33. 33.
    Oner FC, van Gils AP, Dhert WJ, Verbout AJ. MRI findings of thoracolumbar spine fractures: a categorisation based on MRI examinations of 100 fractures. Skelet Radiol. 1999;28:433–43.CrossRefGoogle Scholar
  34. 34.
    Le Hir PX, Sautet A, Le Gars L, Zeitoun F, Tubiana JM, Arrivé L, et al. Hyperextension vertebral body fractures in diffuse idiopathic skeletal hyperostosis: a cause of intravertebral fluidlike collections on MR imaging. AJR. 1999;173:1679–83.CrossRefGoogle Scholar
  35. 35.
    Ratcliffe JF. The arterial anatomy of the adult human lumbar vertebral body: a microarteriographic study. J Anat. 1980;131:57–79.Google Scholar
  36. 36.
    Garret JW, Braunstein PW. The seat belt syndrome. J Trauma. 1962;2:220–38.CrossRefGoogle Scholar
  37. 37.
    Dohan A, Sapoval M, Chousterman BG, di Primio M, Guerot E, Pellerin O. Spontaneous soft-tissue hemorrhage in anticoagulated patients: safety and efficacy of embolization. AJR. 2015;204:1303–10.CrossRefGoogle Scholar
  38. 38.
    Yamamura H, Morioka T, Yamamoto T, Kaneda K, Mizobata Y. Spontaneous retroperitoneal bleeding: a case series. BMC Res Notes. 2014;7:659.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Senshu Trauma and Critical Care CenterRinku General Medical CenterOsakaJapan
  2. 2.Emergency DepartmentSeikeikai HospitalOsakaJapan
  3. 3.Ueno ClinicOsakaJapan

Personalised recommendations