European Journal of Trauma and Emergency Surgery

, Volume 44, Issue 5, pp 667–677 | Cite as

Update on the role of endothelial cells in trauma

  • J. GrevenEmail author
  • R. Pfeifer
  • Q. Zhi
  • H. C. Pape
Original Article



This review gives an overview of physiological processes, mainly regarding vascular endothelial cells and their important role in hemostasis, information processing, and communication during trauma. An insight is given into molecules and cells involved in the first innate immune response through to the behavior of endothelial cells in developing trauma. The goal of this review is to show the overlap of crucial factors related to the endothelium and the development of trauma.


A systemic literature search was performed using Google scholar and PubMed.


The results of the literature search showed that the endothelium, especially the vascular endothelium, is involved in various cellular and subcellular pathways of activation, suppression, and transfer of information. A variety of molecules and cells are orchestrated, subsequently the endothelium gets in contact with a traumatizing event.


The endothelium is one of the first barriers that comes into contact with exo- and endogenous trauma-related signals and is a pivotal point in activating subsequent pathways and cascades by transfer of information.


Trauma Endothelial cells Inflammation Transfer of information 



Prof. Dr. Hildebrand, F.

Compliance with ethical standards

Conflict of interest

Prof. Hans Christoph Pape, Dr. Roman Pfeifer, Dr. Qiao Zhi, and Johannes Greven declare that they have no conflict of interest. No funds were used for this review.

Informed consent

Our research consisted only of review of the literature. No human participants and/or animals were involved in this research.


  1. 1.
    Gimbrone MA Jr. Vascular endothelium: nature’s blood-compatible container. Ann N Y Acad Sci. 1987;516:5–11. doi: 10.1111/j.1749-6632.1987.tb33025.x.CrossRefPubMedGoogle Scholar
  2. 2.
    Ware LB. Transfusion-induced lung endothelial injury: a DAMP death? Am J Respir Crit Care Med. 2014;190:1331–2. doi: 10.1164/rccm.201411-2047ED.CrossRefPubMedGoogle Scholar
  3. 3.
    Jaffe EA. Cell biology of endothelial cells. Hum Pathol. 1987;18:234–9. doi: 10.1016/S0046-8177(87)80005-9.CrossRefPubMedGoogle Scholar
  4. 4.
    Gimbrone MA, Jr, Topper JN, Nagel T, Anderson KR, Garcia-Cardena G. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Annals of the New York Academy of Sciences 2000;902:230–40. doi: 10.1111/j.1749-6632.2000.tb06318.x.CrossRefGoogle Scholar
  5. 5.
    Rondaij MG, Bierings R, Kragt A, van Mourik JA, Voorberg J. Dynamics and plasticity of Weibel-Palade bodies in endothelial cells. Arterioscler Thromb Vasc Biol. 2006;26:1002–7. doi: 10.1161/01.ATV.0000209501.56852.6c.CrossRefPubMedGoogle Scholar
  6. 6.
    Wang P, Ba ZF, Chaudry IH. Endothelial cell dysfunction occurs very early following trauma-hemorrhage and persists despite fluid resuscitation. The American journal of physiology 1993;265:H973–9 (PMID: 8214134).CrossRefGoogle Scholar
  7. 7.
    Cipollone F, Muiesan ML. Flow-mediated vasodilation: improving specificity for endothelial function evaluation. J Hypertens. 2013;31:253–5. doi: 10.1097/HJH.0b013e32835d0dbd.CrossRefPubMedGoogle Scholar
  8. 8.
    Aird WC. Phenotypic heterogeneity of the endothelium: i. Structure, function, and mechanisms. Circ Res. 2007;100:158–73. doi: 10.1161/01.RES.0000255691.76142.4a.CrossRefGoogle Scholar
  9. 9.
    Aird WC. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res. 2007;100:174–90. doi: 10.1161/ Scholar
  10. 10.
    Li G, Sanders JM, Phan ET, Ley K, Sarembock IJ. Arterial macrophages and regenerating endothelial cells express P-selectin in atherosclerosis-prone apolipoprotein E-deficient mice. Am J Pathol. 2005;167:1511–8. doi: 10.1016/S0002-9440(10)61237-0.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Volk T, Kox WJ. Endothelium function in sepsis. Inflamm Res. 2000;49:185–98. doi: 10.1007/s000110050579.CrossRefPubMedGoogle Scholar
  12. 12.
    Burch EE, Shinde Patil VR, Camphausen RT, Kiani MF, Goetz DJ. The N-terminal peptide of PSGL-1 can mediate adhesion to trauma-activated endothelium via P-selectin in vivo. Blood 2002;100:531–8. doi:10.1182./blood.V100.2.531.Google Scholar
  13. 13.
    Gourin CG, Shackford SR. Influence of percussion trauma on expression of intercellular adhesion molecule-1 (ICAM-1) by human cerebral microvascular endothelium. J Trauma. 1996;41:129–35.CrossRefGoogle Scholar
  14. 14.
    Gourin CG, Shackford SR. Production of tumor necrosis factor-alpha and interleukin-1beta by human cerebral microvascular endothelium after percussive trauma. The Journal of trauma 1997;42:1101–7 (PMID: 9210549).CrossRefGoogle Scholar
  15. 15.
    Redl H, Schlag G, Kneidinger R, Ohlinger W, Davies J. Response of the endothelium to trauma and sepsis. Adherence, cytokine effects and procoagulatory response. Arzneimittelforschung. 1994;44:443–6 (PMID: 8185720).PubMedGoogle Scholar
  16. 16.
    Angus DC, Pereira CA, Silva E. Epidemiology of severe sepsis around the world. Endocr Metab Immune Disord Drug Targets. 2006;6:207–12. doi: 10.2174/187153006777442332.CrossRefPubMedGoogle Scholar
  17. 17.
    Talmor D. The costs and cost-effectiveness of an integrated sepsis treatment protocol. Crit Care Med. 2008;36:1168–74. doi: 10.1097/CCM.0b013e318168f649.CrossRefPubMedGoogle Scholar
  18. 18.
    Stan RV. The diaphragms of fenestrated endothelia: gatekeepers of vascular permeability and blood composition. Dev Cell. 2012;23:1203–18. doi: 10.1016/j.devcel.2012.11.003.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Komarova Y, Malik AB. Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol. 2010;72:463–93. doi: 10.1146/annurev-physiol-021909-135833.CrossRefPubMedGoogle Scholar
  20. 20.
    Minshall RD, Malik AB. Transport across the endothelium: regulation of endothelial permeability. Handbook Exp Pharmacol. 2006;. doi: 10.1007/3540-32967-6_4.CrossRefGoogle Scholar
  21. 21.
    Waheed F. Extracellular signal-regulated kinase and GEF-H1 mediate depolarization-induced Rho activation and paracellular permeability increase. Am J Physiol Cell Physiol. 2010;298:C1376–87. doi: 10.1152/ajpcell.00408.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Szaszi K, Sirokmany G, Di Ciano-Oliveira C, Rotstein OD, Kapus A. Depolarization induces Rho-Rho kinase-mediated myosin light chain phosphorylation in kidney tubular cells. Am J Physiol Cell Physiol. 2005;289:C673–85. doi: 10.1152/ajpcell.00481.2004.CrossRefPubMedGoogle Scholar
  23. 23.
    Rochat T, Burkhard C, Finci-Cerkez V, Meda P. Oxidative stress causes a protein kinase C-independent increase of paracellular permeability in an in vitro epithelial model. Am J Respir Cell Mol Biol. 1993;9:496–504. doi: 10.1165/ajrcmb/9.5.496.CrossRefPubMedGoogle Scholar
  24. 24.
    Armstrong SM. Co-regulation of transcellular and paracellular leak across microvascular endothelium by dynamin and Rac. Am J Pathol. 2012;180:1308–23. doi: 10.1016/j.ajpath.2011.12.002.CrossRefPubMedGoogle Scholar
  25. 25.
    Yu Y. Deletion of myosin light chain kinase in endothelial cells has a minor effect on the lipopolysaccharide-induced increase in microvascular endothelium permeability in mice. FEBS J. 2012;279:1485–94. doi: 10.1111/j.1742-4658.2012.08541.x.CrossRefPubMedGoogle Scholar
  26. 26.
    Lenz A, Franklin GA, Cheadle WG. Systemic inflammation after trauma. Injury. 2007;38:1336–45. doi: 10.1016/j.injury.2007.10.003.CrossRefPubMedGoogle Scholar
  27. 27.
    Royall JA. Tumor necrosis factor and interleukin 1 alpha increase vascular endothelial permeability. Am J Physiol. 1989;257:L399–410.PubMedGoogle Scholar
  28. 28.
    Mark KS, Miller DW. Increased permeability of primary cultured brain microvessel endothelial cell monolayers following TNF-alpha exposure. Life Sci. 1999;64:1941–53. doi: 10.1016/S0024-3205(99)00139-3.CrossRefPubMedGoogle Scholar
  29. 29.
    McKenzie JA, Ridley AJ. Roles of rho/ROCK and MLCK in TNF-alpha-induced changes in endothelial morphology and permeability. J Cell Physiol. 2007;213:221–8. doi: 10.1002/jcp.21114.CrossRefPubMedGoogle Scholar
  30. 30.
    Puhlmann M. Interleukin-1beta induced vascular permeability is dependent on induction of endothelial tissue factor (TF) activity. J Transl Med. 2005;3:37. doi: 10.1186/1479-5876-3-37.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Quillon A, Fromy B, Debret R. Endothelium microenvironment sensing leading to nitric oxide mediated vasodilation: a review of nervous and biomechanical signals. Nitric Oxide: Biol Chem. 2015;45:20–6. doi: 10.1016/j.niox.2015.01.006.CrossRefGoogle Scholar
  32. 32.
    Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–6 (PMID 6253831).CrossRefGoogle Scholar
  33. 33.
    Jelliffe RW. Dilator and constrictor effects of acetylcholine on isolated rabbit aortic chains. J Pharmacol Exp Ther. 1962;135:349–53 (PMID 14451561).PubMedGoogle Scholar
  34. 34.
    Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA. 1987;84:9265–9 (PMID 2827174).CrossRefGoogle Scholar
  35. 35.
    Beny JL, Brunet PC, Huggel H. Effect of mechanical stimulation, substance P and vasoactive intestinal polypeptide on the electrical and mechanical activities of circular smooth muscles from pig coronary arteries contracted with acetylcholine: role of endothelium. Pharmacology. 1985;33:61–8 (PMID: 2426721).CrossRefGoogle Scholar
  36. 36.
    Beny JL, Brunet PC. Electrophysiological and mechanical effects of substance P and acetylcholine on rabbit aorta. J Physiol. 1988;398:277–89. doi: 10.1113/jphysiol.1988.sp017042.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Chen G, Suzuki H, Weston AH. Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels. Br J Pharmacol. 1988;95:1165–74. doi: 10.1111/j.1476-5381.1988.tb11752.x.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Feletou M, Vanhoutte PM. The third pathway: endothelium-dependent hyperpolarization. J Physiol Pharmacol. 1999;50:525–34. doi: 10.1002/ddr.10125.CrossRefPubMedGoogle Scholar
  39. 39.
    Feletou M, Vanhoutte PM. Endothelium-dependent hyperpolarization of vascular smooth muscle cells. Acta Pharmacol Sin. 2000;21:1–18.PubMedGoogle Scholar
  40. 40.
    Itoh T. Membrane hyperpolarization inhibits agonist-induced synthesis of inositol 1,4,5-trisphosphate in rabbit mesenteric artery. J Physiol. 1992;451:307–28 (PMC1176163).CrossRefGoogle Scholar
  41. 41.
    Feletou M. The Endothelium: Part 1: Multiple functions of the endothelial cells-focus on endothelium-derived vasoactive mediators. 2011. PMID 21850763.Google Scholar
  42. 42.
    Feletou M. The endothelium: part 2: EDHF-mediated responses. The classical pathway. 2011. PMID 21850764.Google Scholar
  43. 43.
    Sandow SL, Senadheera S, Grayson TH, Welsh DG, Murphy TV. Calcium and endothelium-mediated vasodilator signaling. Adv Exp Med Biol. 2012;740:811–31. doi: 10.1007/978-94-007-2888-2_36.CrossRefPubMedGoogle Scholar
  44. 44.
    Andrews KL. A role for nitroxyl (HNO) as an endothelium-derived relaxing and hyperpolarizing factor in resistance arteries. Br J Pharmacol. 2009;157:540–50. doi: 10.1111/j.1476-5381.2009.00150.x.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Campbell WB, Gebremedhin D, Pratt PF, Harder DR. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res. 1996;78:415–23. doi: 10.1161/01.RES.78.3.415.CrossRefPubMedGoogle Scholar
  46. 46.
    Chauhan SD, Nilsson H, Ahluwalia A, Hobbs AJ. Release of C-type natriuretic peptide accounts for the biological activity of endothelium-derived hyperpolarizing factor. Proc Natl Acad Sci USA. 2003;100:1426–31. doi: 10.1073/pnas.0336365100.CrossRefPubMedGoogle Scholar
  47. 47.
    Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH. K + is an endothelium-derived hyperpolarizing factor in rat arteries. Nature. 1998;396:269–72. doi: 10.1038/24388.CrossRefPubMedGoogle Scholar
  48. 48.
    Huang A. Epoxyeicosatrienoic acids are released to mediate shear stress-dependent hyperpolarization of arteriolar smooth muscle. Circ Res. 2005;96:376–83. doi: 10.1161/01.RES.0000155332.17783.26.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Liu Y, Bubolz AH, Mendoza S, Zhang DX, Gutterman DD. H2O2 is the transferrable factor mediating flow-induced dilation in human coronary arterioles. Circ Res. 2011;108:566–73. doi: 10.1161/CIRCRESAHA.110.237636.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Matoba T. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in human mesenteric arteries. Biochem Biophys Res Commun. 2002;290:909–13. doi: 10.1006/bbrc.2001.6278.CrossRefPubMedGoogle Scholar
  51. 51.
    Matoba T. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Investig. 2000;106:1521–30. doi: 10.1172/JCI10506.CrossRefPubMedGoogle Scholar
  52. 52.
    Mustafa AK. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res. 2011;109:1259–68. doi: 10.1161/CIRCRESAHA.111.240242.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ohta M. Ecto-5′-nucleotidase, CD73, is an endothelium-derived hyperpolarizing factor synthase. Arterioscler Thromb Vasc Biol. 2012;33:629–36. doi: 10.1161/ATVBAHA.112.300600.CrossRefGoogle Scholar
  54. 54.
    Randall MD. An endogenous cannabinoid as an endothelium-derived vasorelaxant. Biochem Biophys Res Commun. 1996;229:114–20. doi: 10.1006/bbrc.1996.1766.CrossRefPubMedGoogle Scholar
  55. 55.
    Ellis A, Triggle CR. Endothelium-derived reactive oxygen species: their relationship to endothelium-dependent hyperpolarization and vascular tone. Can J Physiol Pharmacol. 2003;81:1013–28. doi: 10.1139/y03-106.CrossRefPubMedGoogle Scholar
  56. 56.
    Sandow SL. Factors, fiction and endothelium-derived hyperpolarizing factor. Clin Exp Pharmacol Physiol. 2004;31:563–70. doi: 10.1111/j.1440-1681.2004.04048.x.CrossRefPubMedGoogle Scholar
  57. 57.
    Triggle CR. The endothelium: influencing vascular smooth muscle in many ways. Can J Physiol Pharmacol. 2012;90:713–38. doi: 10.1139/y2012-073.CrossRefGoogle Scholar
  58. 58.
    Edwards DH, Li Y, Ellinsworth DC, Griffith TM. The effect of inorganic arsenic on endothelium-dependent relaxation: role of NADPH oxidase and hydrogen peroxide. Toxicology. 2012;306:50–8. doi: 10.1016/j.tox.2013.01.019.CrossRefGoogle Scholar
  59. 59.
    Edwards DH, Li Y, Griffith TM. Hydrogen peroxide potentiates the EDHF phenomenon by promoting endothelial Ca2 + mobilization. Arterioscler Thromb Vasc Biol. 2008;28:1774–81. doi: 10.1161/ATVBAHA.108.172692.CrossRefPubMedGoogle Scholar
  60. 60.
    Garry A, Edwards DH, Fallis IF, Jenkins RL, Griffith TM. Ascorbic acid and tetrahydrobiopterin potentiate the EDHF phenomenon by generating hydrogen peroxide. Cardiovasc Res. 2009;84:218–26. doi: 10.1093/cvr/cvp235.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    de Wit C, Griffith TM. Connexins and gap junctions in the EDHF phenomenon and conducted vasomotor responses. Eur J Physiol. 2010;459:897–914. doi: 10.1007/s00424-010-0830-4.CrossRefGoogle Scholar
  62. 62.
    Ellinsworth DC, Earley S, Murphy TV, Sandow SL. Endothelial control of vasodilation: Integration of myoendothelial microdomain signalling and modulation by epoxyeicosatrienoic acids. Eur J Physiol. 2014;466:389–405. doi: 10.1007/s00424-013-1303-3.CrossRefGoogle Scholar
  63. 63.
    Jacob TD. Nitric oxide production is inhibited in trauma patients. J Trauma. 1993;35:590–7. doi: 10.1097/00005373-199310000-00015.CrossRefPubMedGoogle Scholar
  64. 64.
    Ochoa JB. Nitrogen oxide levels in patients after trauma and during sepsis. Ann Surg. 1991;214:621–6. doi: 10.1097/00000658-199111000-00013.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Zahs A, Bird MD, Ramirez L, Choudhry MA, Kovacs EJ. Anti-IL-6 antibody treatment but not IL-6 knockout improves intestinal barrier function and reduces inflammation after binge ethanol exposure and burn injury. Shock. 2013;39:373–9. doi: 10.1097/SHK.0b013e318289d6c6.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Okuma Y. Anti-high mobility group box-1 antibody therapy for traumatic brain injury. Ann Neurol. 2012;72:373–84. doi: 10.1002/ana.23602.CrossRefPubMedGoogle Scholar
  67. 67.
    Hunt BJ, Jurd KM. Endothelial cell activation. A central pathophysiological process. BMJ. 1998;316:1328–9. doi: 10.1136/bmj.316.7141.1328.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Butcher EC. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell. 1991;67:1033–6. doi: 10.1016/0092-8674(91)90279-8.CrossRefPubMedGoogle Scholar
  69. 69.
    Phillipson M. Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J Exp Med. 2006;203:2569–75. doi: 10.1084/jem.20060925.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Friedl P, Borgmann S, Brocker EB. Amoeboid leukocyte crawling through extracellular matrix: lessons from the Dictyostelium paradigm of cell movement. J Leukoc Biol. 2001;70:491–509. doi: 10.3410/f.1003679.37654.CrossRefPubMedGoogle Scholar
  71. 71.
    Nourshargh S, Hordijk PL, Sixt M. Breaching multiple barriers: leukocyte motility through venular walls and the interstitium. Nat Rev Mol Cell Biol. 2010;11:366–78. doi: 10.1038/nrm2889.CrossRefPubMedGoogle Scholar
  72. 72.
    Vestweber D. Relevance of endothelial junctions in leukocyte extravasation and vascular permeability. Ann N Y Acad Sci. 2012;1257:184–92. doi: 10.1111/j.1749-6632.2012.06558.x.CrossRefPubMedGoogle Scholar
  73. 73.
    Kuppers V, Vestweber D, Schulte D. Locking endothelial junctions blocks leukocyte extravasation, but not in all tissues. Tissue Barriers. 2012;1:e23805. doi: 10.4161/tisb.23805.CrossRefGoogle Scholar
  74. 74.
    van Rijssel J. The Rho-guanine nucleotide exchange factor Trio controls leukocyte transendothelial migration by promoting docking structure formation. Mol Biol Cell. 2012;23:2831–44. doi: 10.1091/mbc.E11-11-0907.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Vestweber D, Zeuschner D, Rottner K, Schnoor M. Cortactin regulates the activity of small GTPases and ICAM-1 clustering in endothelium: implications for the formation of docking structures. Tissue Barriers. 2012;1:e23862. doi: 10.4161/tisb.23862.CrossRefGoogle Scholar
  76. 76.
    Carman CV, Springer TA. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol. 2004;167:377–88. doi: 10.1083/jcb.200404129.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Barreiro O. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol. 2002;157:1233–45. doi: 10.1083/jcb.200112126.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    van Buul JD. RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration. J Cell Biol. 2007;178:1279–93. doi: 10.1083/jcb.200612053.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Phillipson M, Kaur J, Colarusso P, Ballantyne CM, Kubes P. Endothelial domes encapsulate adherent neutrophils and minimize increases in vascular permeability in paracellular and transcellular emigration. PLoS ONE. 2008;3:e1649. doi: 10.1371/journal.pone.0001649.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Doulet N. Neisseria meningitidis infection of human endothelial cells interferes with leukocyte transmigration by preventing the formation of endothelial docking structures. J Cell Biol. 2006;173:627–37. doi: 10.1083/jcb.200507128.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Frommhold D. Protein C concentrate controls leukocyte recruitment during inflammation and improves survival during endotoxemia after efficient in vivo activation. Am J Pathol. 2011;179:2637–50. doi: 10.1016/j.ajpath.2011.07.023.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Cocks RA, Chan TY, Rainer TH. Leukocyte L-selectin is up-regulated after mechanical trauma in adults. J Trauma. 1998;45:1–6 (PMID 9680003).CrossRefGoogle Scholar
  83. 83.
    Carlos TM, Clark RS, Franicola-Higgins D, Schiding JK, Kochanek PM. Expression of endothelial adhesion molecules and recruitment of neutrophils after traumatic brain injury in rats. J Leukoc Biol. 1997;61:279–85 (PMID 9060450).CrossRefGoogle Scholar
  84. 84.
    Choi K. The hemangioblast: a common progenitor of hematopoietic and endothelial cells. J Hematother Stem Cell Res. 2002;11:91–101. doi: 10.1089/152581602753448568.CrossRefPubMedGoogle Scholar
  85. 85.
    Denis CV. Molecular and cellular biology of von Willebrand factor. Int J Hematol. 2002;75:3–8. doi: 10.1007/BF02981972.CrossRefPubMedGoogle Scholar
  86. 86.
    Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Investig. 2000;105:71–7. doi: 10.1172/JCI8071.CrossRefGoogle Scholar
  87. 87.
    Schick PK, Konkle BA, He X, Thornton RD. P-selectin mRNA is expressed at a later phase of megakaryocyte maturation than mRNAs for von Willebrand factor and glycoprotein Ib-alpha. J Lab Clin Med. 1993;121:714–21 (PMID 7683032).PubMedGoogle Scholar
  88. 88.
    Geng JG. Interaction of vascular endothelial cells with leukocytes, platelets and cancer cells in inflammation, thrombosis and cancer growth and metastasis. Acta Pharmacol Sinica. 2003;24:1297–300 (PMID 14653961).Google Scholar
  89. 89.
    Garcia A, Quinton TM, Dorsam RT, Kunapuli SP. Src family kinase-mediated and Erk-mediated thromboxane A2 generation are essential for VWF/GPIb-induced fibrinogen receptor activation in human platelets. Blood. 2005;106:3410–4. doi: 10.1182/blood-2005-05-1933.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Herzog BH. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature. 2013;502:105–9. doi: 10.1038/nature12501.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Boulaftali Y. Platelet ITAM signaling is critical for vascular integrity in inflammation. J Clin Investig. 2013;123:908–16. doi: 10.1172/JCI65154.CrossRefPubMedGoogle Scholar
  92. 92.
    Bergmeier W, Stefanini L. Platelet ITAM signaling. Curr Opin Hematol. 2013;20:445–50. doi: 10.1097/MOH.0b013e3283642267.CrossRefPubMedGoogle Scholar
  93. 93.
    Boylan B. Identification of FcgammaRIIa as the ITAM-bearing receptor mediating alphaIIbbeta3 outside-in integrin signaling in human platelets. Blood. 2008;112:2780–6. doi: 10.1182/blood-2008-02-142125.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Sullam PM. Physical proximity and functional interplay of the glycoprotein Ib-IX-V complex and the Fc receptor FcgammaRIIA on the platelet plasma membrane. J Biol Chem. 1998;273:5331–6. doi: 10.1074/jbc.273.9.5331.CrossRefPubMedGoogle Scholar
  95. 95.
    Siegel-Axel DI, Gawaz M. Platelets and endothelial cells. Semin Thromb Hemost. 2007;33:128–35. doi: 10.1055/s-2007-969025.CrossRefPubMedGoogle Scholar
  96. 96.
    van Gils JM, Zwaginga JJ, Hordijk PL. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. J Leukoc Biol. 2009;85:195–204. doi: 10.1189/jlb.0708400.CrossRefPubMedGoogle Scholar
  97. 97.
    Gibbins JM. The negative regulation of platelet function: extending the role of the ITIM. Trends Cardiovasc Med. 2002;12:213–9. doi: 10.1016/S1050-1738(02)00164-0.CrossRefPubMedGoogle Scholar
  98. 98.
    Watson SP. The role of ITAM- and ITIM-coupled receptors in platelet activation by collagen. Thromb Haemost. 2001;86:276–88 (PMID 11487016).CrossRefGoogle Scholar
  99. 99.
    Du X. Self-control of platelets: a new ITIM story. Blood. 2014;124:2322–3. doi: 10.1182/blood-2014-08-593830.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Wee JL, Jackson DE. The Ig-ITIM superfamily member PECAM-1 regulates the “outside-in” signaling properties of integrin alpha(IIb)beta3 in platelets. Blood. 2005;106:3816–23. doi: 10.1182/blood-2005-03-0911.CrossRefPubMedGoogle Scholar
  101. 101.
    Maeda A, Kurosaki M, Ono M, Takai T, Kurosaki T. Requirement of SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 for paired immunoglobulin-like receptor B (PIR-B)-mediated inhibitory signal. J Exp Med. 1998;187:1355–60 (PMID 9547347).CrossRefGoogle Scholar
  102. 102.
    Blery M. The paired Ig-like receptor PIR-B is an inhibitory receptor that recruits the protein-tyrosine phosphatase SHP-1. Proc Natl Acad Sci USA. 1998;95:2446–51. doi: 10.1073/pnas.95.5.2446.CrossRefPubMedGoogle Scholar
  103. 103.
    Kutcher ME. Characterization of platelet dysfunction after trauma. J Trauma Acute Care Surg. 2012;73:13–9. doi: 10.1097/TA.0b013e318256deab.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Bick RL. Platelet function defects: a clinical review. Semin Thromb Hemost. 1992;18:167–85. doi: 10.1055/s-2007-1002423.CrossRefPubMedGoogle Scholar
  105. 105.
    van Eijk LT, van der Hoeven JG, Pickkers P. Endothelium-dependent vascular dysfunction in septic patients. Anaesthesia. 2008;63:883–5. doi: 10.1111/j.1365-2044.2008.05613_1.x.CrossRefPubMedGoogle Scholar
  106. 106.
    Kienbaum P. Alterations in forearm vascular reactivity in patients with septic shock. Anaesthesia. 2008;63:121–8. doi: 10.1111/j.1365-2044.2007.05286.x.CrossRefPubMedGoogle Scholar
  107. 107.
    Arteta B. Colon carcinoma cell interaction with liver sinusoidal endothelium inhibits organ-specific antitumor immunity through interleukin-1-induced mannose receptor in mice. Hepatology. 2010;51:2172–82. doi: 10.1002/hep.23590.CrossRefPubMedGoogle Scholar
  108. 108.
    Gentile LF, Moldawer LL. DAMPs, PAMPs, and the origins of SIRS in bacterial sepsis. Shock. 2013;39:113–4. doi: 10.1097/SHK.0b013e318277109c.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81:1–5. doi: 10.1189/jlb.0306164.CrossRefGoogle Scholar
  110. 110.
    Dauphinee SM, Karsan A. Lipopolysaccharide signaling in endothelial cells. Lab Invest. 2006;86:9–22. doi: 10.1038/labinvest.3700366.CrossRefPubMedGoogle Scholar
  111. 111.
    Van Amersfoort ES, Van Berkel TJ, Kuiper J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev. 2003;16:379–414. doi: 10.1128/CMR.16.3.379-414.2003.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Ma YG. Human mannose-binding lectin and L-ficolin function as specific pattern recognition proteins in the lectin activation pathway of complement. J Biol Chem. 2004;279:25307–12. doi: 10.1074/jbc.M400701200.CrossRefPubMedGoogle Scholar
  113. 113.
    Zhu LL. C-type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity. 2013;39:324–34. doi: 10.1016/j.immuni.2013.05.017.CrossRefPubMedGoogle Scholar
  114. 114.
    Ozinsky A. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA. 2000;97:13766–71. doi: 10.1073/pnas.250476497.CrossRefPubMedGoogle Scholar
  115. 115.
    Linehan SA, Martinez-Pomares L, Gordon S. Mannose receptor and scavenger receptor: two macrophage pattern recognition receptors with diverse functions in tissue homeostasis and host defense. Adv Exp Med Biol. 2000;479:1–14. doi: 10.1007/0-306-46831-X_1.CrossRefPubMedGoogle Scholar
  116. 116.
    Anders HJ. Innate pathogen recognition in the kidney: toll-like receptors, NOD-like receptors, and RIG-like helicases. Kidney Int. 2007;72:1051–6. doi: 10.1038/ Scholar
  117. 117.
    Shieh P, Zhou M, Ornan DA, Chaudry IH, Wang P. Upregulation of inducible nitric oxide synthase and nitric oxide occurs later than the onset of the hyperdynamic response during sepsis. Shock. 2000;13:325–9.CrossRefGoogle Scholar
  118. 118.
    Tsukahara Y, Morisaki T, Kojima M, Uchiyama A, Tanaka M. iNOS expression by activated neutrophils from patients with sepsis. ANZ J Surg. 2001;71:15–20. doi: 10.1046/j.1440-1622.2001.02025.x.CrossRefPubMedGoogle Scholar
  119. 119.
    Kang JW, Kim SJ, Cho HI, Lee SM. DAMPs activating innate immune responses in sepsis. Ageing research reviews 2015. doi: 10.1016/j.arr.2015.03.003.CrossRefGoogle Scholar
  120. 120.
    Wiersinga WJ, Leopold SJ, Cranendonk DR, van der Poll T. Host innate immune responses to sepsis. Virulence. 2014;5:36–44. doi: 10.4161/viru.25436.CrossRefPubMedGoogle Scholar
  121. 121.
    Amon M, Laschke MW, Harder Y, Vollmar B, Menger MD. Impact of severity of local soft-tissue trauma on long-term manifestation of microcirculatory and microlymphatic dysfunctions. The Journal of trauma. 2006;61:924–32. doi: 10.1097/01.ta.0000195979.25659.fe.CrossRefPubMedGoogle Scholar
  122. 122.
    Cromer WE. The effects of inflammatory cytokines on lymphatic endothelial barrier function. Angiogenesis. 2014;17:395–406. doi: 10.1007/s10456-013-9393-2.CrossRefPubMedGoogle Scholar
  123. 123.
    Horstman LL, Ahn YS. Platelet microparticles: a wide-angle perspective. Critical reviews in oncology/hematology. 1999;30:111–42. doi: 10.1016/S1040-8428(98)00044-4.CrossRefPubMedGoogle Scholar
  124. 124.
    VanWijk MJ, VanBavel E, Sturk A, Nieuwland R. Microparticles in cardiovascular diseases. Cardiovasc Res. 2003;59:277–87. doi: 10.1016/S0008-6363(03)00367-5.CrossRefPubMedGoogle Scholar
  125. 125.
    Boulanger CM, Amabile N, Tedgui A. Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension. 2006;48:180–6. doi: 10.1161/01.HYP.0000231507.00962.b5.CrossRefPubMedGoogle Scholar
  126. 126.
    Beyer C, Pisetsky DS. The role of microparticles in the pathogenesis of rheumatic diseases. Nat Rev Rheumatol. 2010;6:21–9. doi: 10.1038/nrrheum.2009.229.CrossRefPubMedGoogle Scholar
  127. 127.
    Chironi GN. Endothelial microparticles in diseases. Cell Tissue Res. 2009;335:143–51. doi: 10.1007/s00441-008-0710-9.CrossRefPubMedGoogle Scholar
  128. 128.
    Headland SE, Jones HR, D’Sa AS, Perretti M, Norling LV. Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry. Scientific reports. 2014;4:5237. doi: 10.1038/srep05237.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Horn P. Circulating microparticles carry a functional endothelial nitric oxide synthase that is decreased in patients with endothelial dysfunction. J Am Heart Assoc. 2013;2:e003764. doi: 10.1161/JAHA.112.003764.CrossRefPubMedCentralGoogle Scholar
  130. 130.
    Ayers L. Measurement of circulating cell-derived microparticles by flow cytometry: sources of variability within the assay. Thromb Res. 2011;127:370–7. doi: 10.1016/j.thromres.2010.12.014.CrossRefPubMedGoogle Scholar
  131. 131.
    Dey-Hazra E. Detection of circulating microparticles by flow cytometry: influence of centrifugation, filtration of buffer, and freezing. Vasc Health Risk Manag. 2010;6:1125–33. doi: 10.2147/VHRM.S13236.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Huber J. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler Thromb Vasc Biol. 2002;22:101–7. doi: 10.1161/hq0102.101525.CrossRefPubMedGoogle Scholar
  133. 133.
    Gilbert GE. Platelet-derived microparticles express high affinity receptors for factor VIII. J Biol Chem. 1991;266:17261–8 (PMID 1654328).PubMedGoogle Scholar
  134. 134.
    Jimenez JJ. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb Res. 2003;109:175–80. doi: 10.1016/S0049-3848(03)00064-1.CrossRefPubMedGoogle Scholar
  135. 135.
    Hulsmans M, Holvoet P. MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovasc Res. 2013;100:7–18. doi: 10.1093/cvr/cvt161.CrossRefPubMedGoogle Scholar
  136. 136.
    Deregibus MC. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood. 2007;110:2440–8. doi: 10.1182/blood-2007-03-078709.CrossRefPubMedGoogle Scholar
  137. 137.
    Mause SF, Weber C. Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res. 2010;107:1047–57. doi: 10.1161/CIRCRESAHA.110.226456.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Trauma and Reconstructive SurgeryUniversity of Aachen Medical CenterAachenGermany
  2. 2.Department for TraumatologyUniversity of Zürich Medical CenterZurichSwitzerland

Personalised recommendations