Biomechanical analysis of anterior ring fixation of the ramus in type C pelvis fractures

  • S. McLachlin
  • M. Lesieur
  • D. Stephen
  • H. Kreder
  • C. Whyne
Original Article

Abstract

Purpose

This biomechanical study compared the stability of four different ramus fracture fixation methods for Type C pelvic ring injuries in the absence of posterior fixation.

Methods

A 5-mm vertical osteotomy of the mid-superior and inferior pubic ramus was created in 12 synthetic pelvic models. Four surgical constructs were compared: (1) two-pin AIIS external fixation, (2) 3.5-mm reconstruction plating, (3) bicortical, fully threaded 3.5-mm, and (4) 6.5-mm pubic ramus screws. Specimens were tested in a simulated one-legged stance on a hemiarthroplasty implant in three stages: (1) no applied load, (2) application of the loading fixture preload to the sacrum (6N), and (3) following six cycles of a 250N load. Stability was assessed based on resultant displacement of the fracture sites at the superior ramus and the anterior sacroiliac joint.

Results

The bicortical, fully threaded 6.5-mm pubic ramus screw provided the most stable ramus fracture fixation (0.5 ± 0.4 mm) displacement under load and was the only construct to finish testing without gross posterior pelvic disruption. Plate constructs finished the final loading stage with only a small increase (3.1 ± 2.3 mm) in ramus fracture gap size, but had significant displacement at the SI joint (>20 mm). 3.5-mm screw constructs had 1.6 ± 0.7 mm of ramus displacement in the preload stage, but had complete posterior pelvic disruption (>20 mm) that prevented further testing. External fixation was unstable at the ramus and sacroiliac sites in the initial setup.

Conclusions

The bicortical, fully threaded 6.5-mm pubic ramus screw was the only anterior fixation construct tested that controlled motion at both the anterior and posterior pelvic rings in the absence of posterior fixation.

Keywords

Pelvic fracture Anterior ring fixation Biomechanical stability 

Notes

Compliance with ethical standards

Conflict of interest

Dr. Kreder is currently receiving grant funding from AO Trauma and Biomet. For the remaining authors none were declared.

References

  1. 1.
    Gänsslen A, Pohlemann T, Paul C, Lobenhoffer P, Tscherne H. Epidemiology of pelvic ring injuries. Injury. 1996;27(Suppl 1):A13–A20.CrossRefGoogle Scholar
  2. 2.
    Tile M. Pelvic ring fractures: should they be fixed? J Bone Joint Surg Br. 1988;70:1–12.CrossRefPubMedGoogle Scholar
  3. 3.
    Langford J, Burgess A, Liporace F, Haidukewych G. Pelvic fractures: part 2. Contemporary indications and techniques for definitive surgical management. J Am Acad Orthop Surg. 2013;21:458–68.CrossRefPubMedGoogle Scholar
  4. 4.
    Riemer BL, Butterfield SL, Diamond DL, Young JC, Raves JJ, Cottington E, et al. Acute mortality associated with injuries to the pelvic ring: the role of early patient mobilization and external fixation. J Trauma. 1993;35:671–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Papathanasopoulos A, Tzioupis C, Giannoudis VP, Roberts C, Giannoudis PV. Biomechanical aspects of pelvic ring reconstruction techniques: evidence today. Injury. 2010;41:1220–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Calafi L, Routt Jr ML. Anterior pelvic external fixation: is there an optimal placement for the supra-acetabular pin? Am J Orthop (Belle Mead NJ). 2013;42:E125–E7.Google Scholar
  7. 7.
    Bastian JD, Ansorge A, Tomagra S, Siebenrock KA, Benneker LM, Büchler L, et al. Anterior fixation of unstable pelvic ring fractures using the modified Stoppa approach: mid-term results are independent on patients’ age. Eur J Trauma Emerg Surg. 2016;42(5):645–50.Google Scholar
  8. 8.
    Cole PA, Gauger EM, Anavian J, Ly TV, Morgan RA, Heddings AA. Anterior pelvic external fixator versus subcutaneous internal fixator in the treatment of anterior ring pelvic fractures. J Orthop Trauma. 2012;26:269–77.CrossRefPubMedGoogle Scholar
  9. 9.
    Routt Jr ML, Simonian PT, Grujic L. The retrograde medullary superior pubic ramus screw for the treatment of anterior pelvic ring disruptions: a new technique. J Orthop Trauma. 1995;9:35–44.CrossRefPubMedGoogle Scholar
  10. 10.
    Gardner MJ, Mehta S, Mirza A, Ricci WM. Anterior pelvic reduction and fixation using a subcutaneous internal fixator. J Orthop Trauma. 2012;26:314–21.CrossRefPubMedGoogle Scholar
  11. 11.
    Lindahl J, Hirvensalo E, Böstman O, Santavirta S. Failure of reduction with an external fixator in the management of injuries of the pelvic ring. Long-term evaluation of 110 patients. J Bone Joint Surg Br. 1999;81:955–62.CrossRefPubMedGoogle Scholar
  12. 12.
    Mcdonald E, Theologis AA, Horst P, Kandemir U, Pekmezci M. When do anterior external or internal fixators provide additional stability in an unstable (Tile C) pelvic fracture? A biomechanical study. Eur J Trauma Emerg Surg. 2015;41:665–71.CrossRefPubMedGoogle Scholar
  13. 13.
    Sagi HC, Ordway NR, DiPasquale T. Biomechanical analysis of fixation for vertically unstable sacroiliac dislocations with iliosacral screws and symphyseal plating. J Orthop Trauma. 2004;18:138–43.CrossRefPubMedGoogle Scholar
  14. 14.
    Yinger K, Scalise J, Olson SA, Bay BK, Finkemeier CG. Biomechanical comparison of posterior pelvic ring fixation. J Orthop Trauma. 2003;17:481–7.CrossRefPubMedGoogle Scholar
  15. 15.
    van Zwienen CMA, van den Bosch EW, Snijders CJ, Kleinrensink GJ, van Vugt AB. Biomechanical comparison of sacroiliac screw techniques for unstable pelvic ring fractures. J Orthop Trauma. 2004;18:589–95.CrossRefPubMedGoogle Scholar
  16. 16.
    Pohlemann T, Angst M, Schneider E, Ganz R, Tscherne H. Fixation of transforaminal sacrum fractures: a biomechanical study. J Orthop Trauma. 1993;7:107–17.CrossRefPubMedGoogle Scholar
  17. 17.
    Comstock CP, van der Meulen MC, Goodman SB. Biomechanical comparison of posterior internal fixation techniques for unstable pelvic fractures. J Orthop Trauma. 1996;10:517–22.CrossRefPubMedGoogle Scholar
  18. 18.
    Simonain PT, Routt Jr ML, Harrington RM, Tencer AF. Internal fixation for the transforaminal sacral fracture. Clin Orthop Relat Res. 1996;202–9.Google Scholar
  19. 19.
    Berber O, Amis AA, Day AC. Biomechanical testing of a concept of posterior pelvic reconstruction in rotationally and vertically unstable fractures. J Bone Joint Surg Br. 2011;93:237–44.CrossRefPubMedGoogle Scholar
  20. 20.
    MacAvoy MC, McClellan RT, Goodman SB, Chien CR, Allen WA, van der Meulen MC. Stability of open-book pelvic fractures using a new biomechanical model of single-limb stance. J Orthop Trauma. 1997;11:590–3.CrossRefPubMedGoogle Scholar
  21. 21.
    Simonian PT, Routt Jr ML, Harrington RM, Tencer AF. Internal fixation of the unstable anterior pelvic ring: a biomechanical comparison of standard plating techniques and the retrograde medullary superior pubic ramus. J Orthop Trauma. 1994;8:476–82.CrossRefPubMedGoogle Scholar
  22. 22.
    Biau DJ, Kernéis S, Porcher R. Statistics in brief: the importance of sample size in the planning and interpretation of medical research. Clin Orthop Relat Res. 2008;466:2282–8.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bishop JA, Routt Jr ML. Osseous fixation pathways in pelvic and acetabular fracture surgery. J Trauma Acute Care Surg. 2012;72:1502–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Elfar J, Menorca R, Reed J, Stanbury S. Composite bone models in orthopaedic surgery research and education. J Am Acad Orthop Surg. 2014;22:111–20.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Orthopaedic Biomechanics LaboratorySunnybrook Research InstituteTorontoCanada
  2. 2.Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
  3. 3.Division of Orthopaedic SurgeryUniversity of TorontoTorontoCanada

Personalised recommendations