Advertisement

Strahlentherapie und Onkologie

, Volume 195, Issue 11, pp 982–990 | Cite as

Prospective evaluation of CT-guided HDR brachytherapy as a local ablative treatment for renal masses: a single-arm pilot trial

  • R. DammEmail author
  • T. Streitparth
  • P. Hass
  • M. Seidensticker
  • C. Heinze
  • M. Powerski
  • J. J. Wendler
  • U. B. Liehr
  • K. Mohnike
  • M. Pech
  • J. Ricke
Original Article
  • 154 Downloads

Abstract

Purpose

In this pilot trial, we investigate the safety of CT-guided high-dose-rate brachytherapy (HDR-BT) as a local ablative treatment for renal masses not eligible for resection or nephrectomy.

Methods

We investigated renal function after irradiation by HDR-BT in 16 patients (11 male, 5 female, mean age 76 years) with 20 renal lesions (renal cell carcinoma n = 18; renal metastases n = 2). Two patients had previous contralateral nephrectomy and two had ipsilateral partial nephrectomy. Six lesions had a hilar localization with proximity to the renal pelvis and would have not been favorable for thermal ablation. Renal function loss was determined within 1 year after HDR-BT by renal scintigraphy and laboratory parameters. Further investigations included CT and MRI every 3 months to observe procedural safety and local tumor control. Renal function tests were analyzed by Wilcoxon’s signed rank test with Bonferroni–Holm correction of p-values. Survival and local tumor control underwent a Kaplan–Meier estimation.

Results

Median follow-up was 22.5 months. One patient required permanent hemodialysis 32 months after repeated HDR-BT and contralateral radiofrequency ablation of multifocal renal cell carcinoma. No other patient developed a significant worsening in global renal function and no gastrointestinal or urogenital side effects were observed. Only one patient died of renal tumor progression. Local control rate was 95% including repeated HDR-BT of two recurrences.

Conclusion

HDR-BT is a feasible and safe technique for the local ablation of renal masses. A phase II study is recruiting to evaluate the efficacy of this novel local ablative treatment in a larger study population.

Keywords

Renal cell cancer Brachytherapy Local-ablative treatment Renal tumors Renal function 

Prospektive Evaluation der CT-gesteuerten HDR-Brachytherapie als lokalablative Behandlung von Nierenraumforderungen: eine einarmige Pilotstudie

Zusammenfassung

Ziel

In dieser Pilotstudie wurde die Sicherheit der computertomographie-(CT-)geführten „High-dose-rate“-Brachytherapie (HDR-BT) bei der lokalablativen Behandlung von nichtresektablen Nierenraumforderungen untersucht.

Methoden

Es wurde die Nierenfunktion von 16 Patienten (11 männlich, 5 weiblich, mittleres Alter 76 Jahre) mit 20 Nierenläsionen (Nierenzellkarzinom n = 18; Nierenmetastasen n = 2) nach Bestrahlung mittels HDR-BT untersucht. Jeweils 2 Patienten hatten eine vorangegangene kontralaterale Nephrektomie bzw. ipsilaterale Teilresektion. Sechs Läsionen lagen zentral am Nierenbecken und waren technisch nicht suffizient durch eine thermische Ablation behandelbar. Die Nierenfunktion wurde innerhalb eines Jahres nach HDR-BT durch Nierensequenzszintigraphien sowie Laborwerte bestimmt. Weitere Untersuchungen beinhalteten CT und Magnetresonanztomographie (MRT) alle 3 Monate zur Beobachtung der Sicherheit und Tumorkontrolle. Die Nierenfunktionstests wurden mit dem Wilcoxon-Test mit Bonferroni-Holm-Korrektur der p-Werte analysiert. Überleben und lokale Tumorkontrolle wurden mit der Kaplan-Meier-Schätzung ausgewertet.

Ergebnisse

Das mediane Follow-up betrug 22,5 Monate. Ein Patient benötigte permanente Hämodialyse 32 Monate nach wiederholter HDR-BT und kontralateraler Radiofrequenzablation bei multifokalem Nierenzellkarzinom. Keine weiteren Patienten zeigten eine signifikante Verschlechterung der globalen Nierenfunktion. Es wurden keine gastrointestinalen oder urogenitalen Nebenwirkungen beobachtet. Ein Patient verstarb durch lokale Tumorprogression. Die lokale Kontrollrate betrug – einschließlich wiederholter HDR-BT von zwei Rezidiven – 95%.

Schlussfolgerung

Die HDR-BT ist eine technisch machbare und sichere Technik zur lokalen Ablation von Nierentumoren. Momentan rekrutiert eine Phase-II-Studie eine größere Patientenpopulation, um die Effektivität dieser neuen Anwendung genauer zu untersuchen.

Schlüsselwörter

Nierenzellkarzinom Brachytherapie Lokalablative Behandlung Nierentumore Nierenfunktion 

Notes

Compliance with ethical guidelines

Conflict of interest

R. Damm, T. Streitparth, P. Hass, M. Seidensticker, C. Heinze, M. Powerski, J.J. Wendler, U.B. Liehr, K. Mohnike, M. Pech, and J. Ricke state that there are no competing interests and that this work has not received any funding.

Ethical standards

The study was conducted in accordance with the Declaration of Helsinki. All patients included were treated at a single institution, prospective data collection and analysis was approved by the local ethics committee. All patients gave written informed consent for the collection of their medical data for scientific purposes. No personal information is included in the publication, thus no dedicated approval was required.

References

  1. 1.
    Kim DY, Wood CG, Karam JA (2014) Treating the two extremes in renal cell carcinoma: management of small renal masses and cytoreductive nephrectomy in metastatic disease. Am Soc Clin Oncol Educ Book e214–21.  https://doi.org/10.14694/EdBook_AM.2014.34.e214 CrossRefPubMedGoogle Scholar
  2. 2.
    Thompson RH, Atwell T, Schmit G, Lohse CM, Kurup AN, Weisbrod A et al (2015) Comparison of partial nephrectomy and percutaneous ablation for cT1 renal masses. Eur Urol 67:252–259CrossRefGoogle Scholar
  3. 3.
    Rivero JR, De La Cerda J 3rd, Wang H, Liss MA, Farrell AM, Rodriguez R et al (2018) Partial nephrectomy versus thermal ablation for clinical stage T1 renal masses: systematic review and meta-analysis of more than 3,900 patients. J Vasc Interv Radiol 29:18–29CrossRefGoogle Scholar
  4. 4.
    Sung HH, Park BK, Kim CK, Choi HY, Lee HM (2012) Comparison of percutaneous radiofrequency ablation and open partial nephrectomy for the treatment of size- and location-matched renal masses. Int J Hyperthermia 28:227–234CrossRefGoogle Scholar
  5. 5.
    Collettini F, Schnapauff D, Poellinger A, Denecke T, Schott E, Berg T et al (2012) Hepatocellular carcinoma: computed-tomography-guided high-dose-rate brachytherapy (CT-HDRBT) ablation of large (5–7 cm) and very large (〉7 cm) tumours. Eur Radiol 22:1101–1109CrossRefGoogle Scholar
  6. 6.
    Collettini F, Singh A, Schnapauff D, Powerski MJ, Denecke T, Wust P et al (2013) Computed-tomography-guided high-dose-rate brachytherapy (CT-HDRBT) ablation of metastases adjacent to the liver hilum. Eur J Radiol 82:e509–14CrossRefGoogle Scholar
  7. 7.
    Vollherbst D, Bertheau R, Kauczor HU, Radeleff BA, Pereira PL, Sommer CM (2017) Treatment failure after image-guided percutaneous radiofrequency ablation (RFA) of renal tumors—a systematic review with description of type, frequency, risk factors and management. Rofo 189:219–227PubMedGoogle Scholar
  8. 8.
    Mohnike K, Wieners G, Schwartz F, Seidensticker M, Pech M, Ruehl R et al (2010) Computed tomography-guided high-dose-rate brachytherapy in hepatocellular carcinoma: safety, efficacy, and effect on survival. Int J Radiat Oncol Biol Phys 78:172–179CrossRefGoogle Scholar
  9. 9.
    Ricke J, Mohnike K, Pech M, Seidensticker M, Ruhl R, Wieners G et al (2010) Local response and impact on survival after local ablation of liver metastases from colorectal carcinoma by computed tomography-guided high-dose-rate brachytherapy. Int J Radiat Oncol Biol Phys 78:479–485CrossRefGoogle Scholar
  10. 10.
    Mohnike K, Neumann K, Hass P, Seidensticker M, Seidensticker R, Pech M et al (2017) Radioablation of adrenal gland malignomas with interstitial high-dose-rate brachytherapy: Efficacy and outcome. Strahlenther Onkol 193:612–619CrossRefGoogle Scholar
  11. 11.
    Wieners G, Pech M, Rudzinska M, Lehmkuhl L, Wlodarczyk W, Miersch A et al (2006) CT-guided interstitial brachytherapy in the local treatment of extrahepatic, extrapulmonary secondary malignancies. Eur Radiol 16:2586–2593CrossRefGoogle Scholar
  12. 12.
    Geisel D, Collettini F, Denecke T, Grieser C, Florcken A, Wust P et al (2013) Treatment for liver metastasis from renal cell carcinoma with computed-tomography-guided high-dose-rate brachytherapy (CT-HDRBT): a case series. World J Urol 31:1525–1530CrossRefGoogle Scholar
  13. 13.
    Mohnike K, Wolf S, Damm R, Seidensticker M, Seidensticker R, Fischbach F et al (2016) Radioablation of liver malignancies with interstitial high-dose-rate brachytherapy: Complications and risk factors. Strahlenther Onkol 192:288–296CrossRefGoogle Scholar
  14. 14.
    Streitparth F, Pech M, Bohmig M, Ruehl R, Peters N, Wieners G et al (2006) In vivo assessment of the gastric mucosal tolerance dose after single fraction, small volume irradiation of liver malignancies by computed tomography-guided, high-dose-rate brachytherapy. Int J Radiat Oncol Biol Phys 65:1479–1486CrossRefGoogle Scholar
  15. 15.
    Wieners G, Mohnike K, Peters N, Bischoff J, Kleine-Tebbe A, Seidensticker R et al (2011) Treatment of hepatic metastases of breast cancer with CT-guided interstitial brachytherapy—a phase II-study. Radiother Oncol 100:314–319CrossRefGoogle Scholar
  16. 16.
    Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240:205–213PubMedPubMedCentralGoogle Scholar
  17. 17.
    Huang WC, Levey AS, Serio AM, Snyder M, Vickers AJ, Raj GV et al (2006) Chronic kidney disease after nephrectomy in patients with renal cortical tumours: a retrospective cohort study. Lancet Oncol 7:735–740CrossRefGoogle Scholar
  18. 18.
    Raman JD, Jafri SM, Qi D (2016) Kidney function outcomes following thermal ablation of small renal masses. World J Nephrol 5:283–287CrossRefGoogle Scholar
  19. 19.
    Mir MC, Ercole C, Takagi T, Zhang Z, Velet L, Remer EM et al (2015) Decline in renal function after partial nephrectomy: etiology and prevention. J Urol 193:1889–1898CrossRefGoogle Scholar
  20. 20.
    Choi KH, Yoon YE, Kim KH, Han WK (2015) Contralateral kidney volume change as a consequence of ipsilateral parenchymal atrophy promotes overall renal function recovery after partial nephrectomy. Int Urol Nephrol 47:25–32CrossRefGoogle Scholar
  21. 21.
    Takagi T, Mir MC, Sharma N, Remer EM, Li J, Demirjian S et al (2014) Compensatory hypertrophy after partial and radical nephrectomy in adults. J Urol 192:1612–1618CrossRefGoogle Scholar
  22. 22.
    Stewart FA, Te Poele JA, Van der Wal AF, Oussoren YG, Van Kleef EM, Kuin A et al (2001) Radiation nephropathy—the link between functional damage and vascular mediated inflammatory and thrombotic changes. Acta Oncol 40:952–957CrossRefGoogle Scholar
  23. 23.
    Atwell TD, Schmit GD, Boorjian SA, Mandrekar J, Kurup AN, Weisbrod AJ et al (2013) Percutaneous ablation of renal masses measuring 3.0 cm and smaller: comparative local control and complications after radiofrequency ablation and cryoablation. Ajr Am J Roentgenol 200:461–466CrossRefGoogle Scholar
  24. 24.
    Caputo PA, Zargar H, Ramirez D, Andrade HS, Akca O, Gao T et al (2017) Cryoablation versus partial nephrectomy for clinical T1b renal tumors: a matched group comparative analysis. Eur Urol 71:111–117CrossRefGoogle Scholar
  25. 25.
    Kunkle DA, Uzzo RG (2008) Cryoablation or radiofrequency ablation of the small renal mass: a meta-analysis. Cancer 113:2671–2680CrossRefGoogle Scholar
  26. 26.
    Psutka SP, Feldman AS, McDougal WS, McGovern FJ, Mueller P, Gervais DA (2013) Long-term oncologic outcomes after radiofrequency ablation for T1 renal cell carcinoma. Eur Urol 63:486–492CrossRefGoogle Scholar
  27. 27.
    Panje C, Andratschke N, Brunner TB, Niyazi M, Guckenberger M (2016) Stereotactic body radiotherapy for renal cell cancer and pancreatic cancer: literature review and practice recommendations of the DEGRO working group on stereotactic radiotherapy. Strahlenther Onkol 192:875–885CrossRefGoogle Scholar
  28. 28.
    Pham D, Thompson A, Kron T, Foroudi F, Kolsky MS, Devereux T et al (2014) Stereotactic ablative body radiation therapy for primary kidney cancer: a 3-dimensional conformal technique associated with low rates of early toxicity. Int J Radiat Oncol Biol Phys 90:1061–1068CrossRefGoogle Scholar
  29. 29.
    Siva S, Pham D, Kron T, Bressel M, Lam J, Tan TH et al (2017) Stereotactic ablative body radiotherapy for inoperable primary kidney cancer: a prospective clinical trial. BJU Int 120:623–630CrossRefGoogle Scholar
  30. 30.
    Staehler M, Bader M, Schlenker B, Casuscelli J, Karl A, Roosen A et al (2015) Single fraction radiosurgery for the treatment of renal tumors. J Urol 193:771–775CrossRefGoogle Scholar
  31. 31.
    Filippiadis DK, Gkizas C, Chrysofos M, Siatelis A, Velonakis G, Alexopoulou E et al (2018) Percutaneous microwave ablation of renal cell carcinoma using a high power microwave system: focus upon safety and efficacy. Int J Hyperthermia 34:1077–1081CrossRefGoogle Scholar
  32. 32.
    Su MZ, Memon F, Lau HM, Brooks AJ, Patel MI, Woo HH et al (2016) Safety, efficacy and predictors of local recurrence after percutaneous radiofrequency ablation of biopsy-proven renal cell carcinoma. Int Urol Nephrol 48:1609–1616CrossRefGoogle Scholar
  33. 33.
    Dai Y, Covarrubias D, Uppot R, Arellano RS (2017) Image-guided percutaneous radiofrequency ablation of central renal cell carcinoma: assessment of clinical efficacy and safety in 31 tumors. J Vasc Interv Radiol 28:1643–1650CrossRefGoogle Scholar
  34. 34.
    Fukuda S, Seo Y, Shiomi H, Yamada Y, Ogata T, Morimoto M et al (2014) Dosimetry analyses comparing high-dose-rate brachytherapy, administered as monotherapy for localized prostate cancer, with stereotactic body radiation therapy simulated using CyberKnife. J Radiat Res 55:1114–1121CrossRefGoogle Scholar
  35. 35.
    Pennington JD, Park SJ, Abgaryan N, Banerjee R, Lee PP, Loh C et al (2015) Dosimetric comparison of brachyablation and stereotactic ablative body radiotherapy in the treatment of liver metastasis. Brachytherapy 14:537–542CrossRefGoogle Scholar
  36. 36.
    Siva S, Pham D, Gill S, Bressel M, Dang K, Devereux T et al (2013) An analysis of respiratory induced kidney motion on four-dimensional computed tomography and its implications for stereotactic kidney radiotherapy. Radiat Oncol 8:248CrossRefGoogle Scholar
  37. 37.
    Dib RE, Touma NJ, Kapoor A (2009) Review of the efficacy and safety of radiofrequency ablation for the treatment of small renal masses. Can Urol Assoc J 3:143–149CrossRefGoogle Scholar
  38. 38.
    Kapoor A, Touma NJ, Dib RE (2013) Review of the efficacy and safety of cryoablation for the treatment of small renal masses. Can Urol Assoc J 7:E38–44CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • R. Damm
    • 1
    • 6
    Email author
  • T. Streitparth
    • 2
  • P. Hass
    • 3
  • M. Seidensticker
    • 2
  • C. Heinze
    • 1
  • M. Powerski
    • 1
  • J. J. Wendler
    • 4
  • U. B. Liehr
    • 4
  • K. Mohnike
    • 5
  • M. Pech
    • 1
  • J. Ricke
    • 2
  1. 1.Department of Radiology and Nuclear MedicineOtto-von-Guericke UniversityMagdeburgGermany
  2. 2.Department of RadiologyLudwig-Maximilians-University MunichMunichGermany
  3. 3.Department of Radiation OncologyOtto-von-Guericke UniversityMagdeburgGermany
  4. 4.Department of UrologyOtto-von-Guericke UniversityMagdeburgGermany
  5. 5.Diagnostic and Therapeutic Center am Frankfurter TorBerlinGermany
  6. 6.Klinik für Radiologie und NuklearmedizinUniversitätsklinikum MagdeburgMagdeburgGermany

Personalised recommendations