Strahlentherapie und Onkologie

, Volume 195, Issue 6, pp 517–525 | Cite as

Impact of bladder volume on acute genitourinary toxicity in intensity modulated radiotherapy for localized and locally advanced prostate cancer

  • Arne GrünEmail author
  • Michael Kawgan-Kagan
  • David Kaul
  • Harun Badakhshi
  • Carmen Stromberger
  • Volker Budach
  • Dirk Böhmer
Original Article


Background and purpose

To evaluate the effect of changes in bladder volume during high-dose intensity-modulated-radiotherapy (IMRT) of prostate cancer on acute genitourinary (GU) toxicity and prospectively evaluate a simple biofeedback technique for reproducible bladder filling with the aim of reducing acute GU toxicity.


One hundred ninety-three patients were trained via a biofeedback mechanism to maintain a partially filled bladder with a reproducible volume of 200–300 cc at planning CT and subsequently at each fraction of radiotherapy. We prospectively analyzed whether and to what extent the patients’ ability to maintain a certain bladder filling influenced the degree of acute GU toxicity and whether cut-off values could be differentiated.


We demonstrated that the ability to reach a reproducible bladder volume above a threshold volume of 180 cc and maintain that volume via biofeedback throughout treatment predicts for a decrease in acute GU toxicity during curative high-dose IMRT of the prostate. Patients who were not able to reach a partial bladder filling to that cut-off value and were not able to maintain a partially filled bladder throughout treatment had a significantly higher risk of developing ≥grade 2 GU acute toxicity.


Our results support the hypothesis that a biofeedback training for the patient is an easy-to-apply, useful, and cost-effective tool for reducing acute GU toxicity in high-dose IMRT of the prostate. Patients who are not able to reach and maintain a certain bladder volume during planning and treatment—two independent risk factors—might need special consideration.


Prostate cancer Radiotherapy IMRT (intensity modulated radiotherapy) Bladder-volume Bio-feedback GU toxicity 

Einfluss des Harnblasenvolumens auf uro-genitale akut-Nebenwirkungen unter hochdosierter intensitätsmodulierter Strahlentherapie (IMRT) bei lokal begrenztem und fortgeschrittenem Prostatakarzinom


Hintergrund und Ziel

Auswertung des Einflusses des Harnblasenvolumens während hochdosierter intensitätsmodulierter Strahlentherapie (IMRT) bei Prostatakarzinom auf die akute urogenitale Toxizität sowie prospektive Auswertung eines einfachen Biofeedback-Mechanismus zur reproduzierbaren Harnblasenfüllung mit dem Ziel, akute urogenitale Nebenwirkungen zu reduzieren.


Insgesamt 193 Patienten wurde mit Hilfe eines einfachen Biofeedback-Mechanismus beigebracht, während der Planungs-CT und jeder folgenden Fraktion ein Harnblasenvolumen von 200–300 ml zu reproduzieren. Es erfolgte eine prospektive Auswertung inwiefern sich die Fähigkeit, ein bestimmtes Harnblasenvolumen zu erreichen und zu halten, auf die Rate an akuten urogenitalen Nebenwirkungen auswirkt und ob Grenzwerte definiert werden können.


Wir konnten zeigen, dass während einer hochdosierten IMRT der Prostata die Fähigkeit ein Harnblasenvolumen von mindestens 180 ml zu erreichen und zu jeder Fraktion der Therapie reproduzieren zu können, prädiktiv für eine Reduktion von akuten urogenitalen Nebenwirkungen ist. Patienten, die keine partielle Harnblasenfüllung erreichen und reproduzieren konnten, zeigten eine signifikant erhöhte Rate urogenitaler Nebenwirkungen ≥ Grad 2.


Unsere Ergebnisse zeigen, dass akute urogenitale Nebenwirkungen während einer hochdosierten IMRT der Prostata kostengünstig mit einem einfachen Biofeedback-Mechanismus reduziert werden können. Patienten, die es nicht schaffen, ein bestimmtes Blasenvolumen zu erreichen und zu halten, benötigen möglicherweise intensivere Betreuung.


Prostatakarzinom Strahlentherapie IMRT (intensitätsmodulierte Strahlentherapie) Harnblasenvolumen Biofeedback Urogenitale Nebenwirkungen 


Conflict of interest

A. Grün, M. Kawgan-Kagan, D. Kaul, H. Badakhshi, C. Stromberger, V. Budach, and D. Böhmer declare that they have no competing interests.


  1. 1.
    Dolezel M, Odrazka K, Vaculikova M et al (2009) Dose escalation in prostate radiotherapy up to 82 Gy using simultaneous integrated Boost. Strahlenther Onkol 186:197–202CrossRefGoogle Scholar
  2. 2.
    Al-Mamgani A, van Putten WLJ, Heemsbergen WD et al (2008) Update of Dutch multicenter dose-escalation trial of radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 72(4):980–988CrossRefGoogle Scholar
  3. 3.
    Hanks GE, Hanlon AL, Schultheiss TE et al (1998) Dose escalation with 3D conformal treatment: five year outcomes, treatment optimization, and future directions. Int J Radiat Oncol Biol Phys 41:501–510CrossRefGoogle Scholar
  4. 4.
    Harsolia A, Vargas C, Yan D et al (2007) Predictors for chronic urinary toxicity after the treatment of prostate cancer with adaptive three-dimensional conformal radiotherapy: dose-volume analysis of a phase II dose-escalation study. Int J Radiat Oncol Biol Phys 69:1100–1109CrossRefGoogle Scholar
  5. 5.
    Jereczek-Fossa BA, Zerini D, Fodor C et al (2010) Correlation between acute and late toxicity in 973 prostate cancer patients treated with three-dimensional conformal external beam radiotherapy. Int J Radiat Oncol Biol Phys 78:26–34CrossRefGoogle Scholar
  6. 6.
    Zelefsky MJ, Levin EJ, Hunt M et al (2008) Incidence of late rectal and urinary toxicities after three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 70:1124–1129CrossRefGoogle Scholar
  7. 7.
    Fiorino C, Rancati T, Valdagni R et al (2009) Predictive models of toxicity in external radiotherapy: dosimetric issues. Cancer 115:3135–3140CrossRefGoogle Scholar
  8. 8.
    Guckenberger M, Pohl F, Baier K et al (2006) Influence of rectum delineation (rectal volume vs. rectal wall) on IMRT planning of the prostate. Strahlenther Onkol 182:721–726CrossRefGoogle Scholar
  9. 9.
    Kranz J, Maurer G, Maurer U et al (2017) Urethral stricture rate after prostate cancer radiotherapy. Five-year data of a certified prostate cancer center. Urologe 56:336–341CrossRefGoogle Scholar
  10. 10.
    Zelefsky MJ, Kollmeier M, Cox B et al (2012) Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 84:125–129CrossRefGoogle Scholar
  11. 11.
    Pinkawa M, Pursch-Lee M, Asadpour B et al (2008) Image-guided radiotherapy for prostate cancer. Strahlenther Onkol 184:679–685CrossRefGoogle Scholar
  12. 12.
    CTCAE v4.0 (US Department of Health and Human Services, National Institute of Health, National Cancer Institute, NIH Publication No. 09-5410)Google Scholar
  13. 13.
    Cox JD, Stetz J, Pajak TF (1995) Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys 31:1341–1346CrossRefGoogle Scholar
  14. 14.
    Maggio A, Gabriele D, Garibaldi E, Bresciani S, Delmastro E, Di Dia A, Miranti A, Poli M, Varetto T, Stasi M, Gabriele P (2017) Impact of a rectal and bladder preparation protocol on prostate cancer outcome in patients treated with external beam radiotherapy. Strahlenther Onkol 193:722–732CrossRefGoogle Scholar
  15. 15.
    Chen Z, Yang Z, Wang J et al (2016) Dosimetric impact of different bladder and rectum filling during prostate cancer radiotherapy. Radiat Oncol 11:103CrossRefGoogle Scholar
  16. 16.
    Fujioka C, Ishii K, Yamanaga T et al (2016) Optimal bladder volume at treatment planning for prostate cancer patients receiving volumetric arc therapy. Pract Radiat Oncol 6:395–401CrossRefGoogle Scholar
  17. 17.
    Pinkawa M, Siluschek J, Gagel B et al (2007) Postoperative radiotherapy for prostate cancer. Strahlenther Onkol 183:23–299CrossRefGoogle Scholar
  18. 18.
    Polat B, Guenther I, Wilbert J et al (2008) Intra-fractional uncertainties in image-guided Intensity-Modulated Radiotherapy (IMRT) of prostate cancer. Strahlenther Onkol 184:668–673CrossRefGoogle Scholar
  19. 19.
    Lebesque JV, Bruce AM, Kroes AP et al (1995) Variation in volumes, dose-volume histograms, and estimated normal tissue complication probabilities of rectum and bladder during conformal radiotherapy of T3 prostate cancer. Int J Radiat Oncol Biol Phys 33:1109–1119CrossRefGoogle Scholar
  20. 20.
    Nakamura N, Shikama N, Takahashi O (2010) Variability in bladder volumes s of full bladders in definitive radiotherapy for cases of localized prostate cancer. Strahlenther Onkol 186(11):637–642CrossRefGoogle Scholar
  21. 21.
    Stam MER, van Lin ENJT, van der Vight LP, Kaanders JHAM, Visser AG (2006) Bladder filling variation during radiation treatment of prostate cancer: can the use of a bladder ultrasound scanner and biofeedback optimize bladder filling? Int J Radiat Oncol Biol Phys 65:371–377CrossRefGoogle Scholar
  22. 22.
    Beard CJ, Kijewski P, Bussière M et al (1996) Analysis of prostate and seminal vesicle motion: implications for treatment planning. Int J Radiat Oncol Biol Phys 34:451–458CrossRefGoogle Scholar
  23. 23.
    Zelefsky MJ, Crean D, Mageras D et al (1999) Quantification and predictors of prostate position variability in 50 patients evaluated with multiple CT scans during conformal radiotherapy. Radiother Oncol 50:225–234CrossRefGoogle Scholar
  24. 24.
    Reddy NMS, Nori D, Sartin W et al (2009) Influence of volumes of prostate, rectum, and bladder on treatment planning CT on inter-fraction prostate shifts during ultrasound image-guided IMRT. Med Phys 36:5604–5611CrossRefGoogle Scholar
  25. 25.
    Tsai CL, Wu JK, Wang CW et al (2009) Using cone-beam computed tomography to evaluate the impact of bladder filling status on target position in prostate radiotherapy. Strahlenther Onkol 185:588–595CrossRefGoogle Scholar
  26. 26.
    Zellars RC, Roberson PL, Strawderman M et al (2000) Prostate position late in the course of external beam therapy: patterns and predictors. Int J Radiat Oncol Biol Phys 47:655–660CrossRefGoogle Scholar
  27. 27.
    Pinkawa M, Asadpour B, Gagel B et al (2006) Prostate position variability and dose-volume histograms in radiotherapy for prostate cancer with full and empty bladder. Int J Radiat Oncol Biol Phys 64:856–861CrossRefGoogle Scholar
  28. 28.
    Mullaney LM, O’Shea E, Dunne MT et al (2014) A randomized trial comparing bladder volume consistency during fractionated prostate radiation therapy. Pract Radiat Oncol 4:203–212CrossRefGoogle Scholar
  29. 29.
    Jorgo K, Ágoston P, Major T et al (2017) Trans-perineal gold marker implantation for image-guided external beam radiotherapy of prostate cancer : a single institution, prospective study. Strahlenther Onkol 193:452–458CrossRefGoogle Scholar
  30. 30.
    Wust P, Joswig M, Graf R et al (2017) Dosimetric implications of inter- and intrafractional prostate positioning errors during tomotherapy: comparison of gold marker-based registrations with native MVCT. Strahlenther Onkol 193:700–706CrossRefGoogle Scholar
  31. 31.
    R Development Core Team (2010) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 978-3900051075 ( Scholar
  32. 32.
    Therneau TM (2011) Survival analysis, including penalized likelihood. Google Scholar
  33. 33.
    O’Doherty UM, McNair HA, Norman AR et al (2006) Variability of bladder filling in patients receiving radical radiotherapy to the prostate. Radiother Oncol 79:335–340CrossRefGoogle Scholar
  34. 34.
    Fonteyne V, Villeirs G, Lumen N, De Meerleer G (2009) Urinary toxicity after high dose intensity modulated radiotherapy as primary therapy for prostate cancer. Radiother Oncol 92:42–47CrossRefGoogle Scholar
  35. 35.
    Matzinger O, Duclos F, van den Bergh A et al (2009) Acute toxicity of curative radiotherapy for intermediate- and high-risk localised prostate cancer in the EORTC trial 22991. Eur J Cancer 45:2825–2834CrossRefGoogle Scholar
  36. 36.
    Peeters STH, Heemsbergen WD, van Putten WLJ et al (2005) Acute and late complications after radiotherapy for prostate cancer: results of a multicenter randomized trial comparing 68 Gy to 78 Gy. Int J Radiat Oncol Biol Phys 61:1019–1034CrossRefGoogle Scholar
  37. 37.
    Cambria R, Jereczek-Fossa BA, Zerini D et al (2011) Physical and clinical implications of radiotherapy treatment of prostate cancer using a full bladder protocol. Strahlenther Onkol 187:799–805CrossRefGoogle Scholar
  38. 38.
    Ten Haken RK, Forman JD, Heimburger DK et al (1991) Treatment planning issues related to prostate movement in response to differential filling of the rectum and bladder. Int J Radiat Oncol Biol Phys 20:1317–1324CrossRefGoogle Scholar
  39. 39.
    Cramp L, Connors V, Wood M et al (2017) Use of a prospective cohort study in the development of a bladder scanning protocol to assist in bladder filling consistency for prostate cancer patients receiving radiation therapy. J Med Radiat Sci 63:179–185CrossRefGoogle Scholar
  40. 40.
    Pinkawa M, Fischedick K, Asadpour B et al (2006) Low-grade toxicity after conformal radiation therapy for prostate cancer–impact of bladder volume. Int J Radiat Oncol Biol Phys 64:835–841CrossRefGoogle Scholar
  41. 41.
    Nakamura N, Shikama S, Takahashi O et al (2011) The relationship between the bladder volume and optimal treatment planning in definitive radiotherapy for localized prostate cancer. Acta Oncol 51:730–734CrossRefGoogle Scholar
  42. 42.
    Kupelian PA, Langen KM, Zeidan OA et al (2006) Daily variations in delivered doses in patients treated with radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 66:876–882CrossRefGoogle Scholar
  43. 43.
    Jaal J, Dörr W (2006) Radiation-induced damage to mouse urothelial barrier. Radiother Oncol 80:250–256CrossRefGoogle Scholar
  44. 44.
    Chen MJ, Weltman E, Hanriot RM et al (2007) Intensity modulated radiotherapy for localized prostate cancer: rigid compliance to dose-volume constraints as a warranty of acceptable toxicity? Radiat Oncol 2:6CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department for Radiation OncologyCharité—University Medicine Berlin, Campus Virchow-ClinicBerlinGermany
  2. 2.Department for Radiation OncologyHelios Klinikum Berlin-BuchBerlinGermany
  3. 3.Department for Radiation OncologyErnst-von-Bergmann KlinikumPotsdamGermany
  4. 4.Department for Radiation OncologyCharité—University Medicine Berlin, Campus Benjamin FranklinBerlinGermany

Personalised recommendations