Advertisement

Strahlentherapie und Onkologie

, Volume 195, Issue 3, pp 226–235 | Cite as

SBRT planning for spinal metastasis: indications from a large multicentric study

  • Marco EspositoEmail author
  • Laura Masi
  • Margherita Zani
  • Raffaela Doro
  • David Fedele
  • Cristina Garibaldi
  • Stefania Clemente
  • Christian Fiandra
  • Francesca Romana Giglioli
  • Carmelo Marino
  • Laura Orsingher
  • Serenella Russo
  • Michele Stasi
  • Lidia Strigari
  • Elena Villaggi
  • Pietro Mancosu
Original Article

Abstract

Background

The dosimetric variability in spine stereotactic body radiation therapy (SBRT) planning was investigated in a large number of centres to identify crowd knowledge-based solutions.

Methods

Two spinal cases were planned by 48 planners (38 centres). The required prescription dose (PD) was 3 × 10 Gy and the planning target volume (PTV) coverage request was: VPD > 90% (minimum request: VPD > 80%). The dose constraints were: planning risk volume (PRV) spinal cord: V18Gy < 0.35 cm3, V21.9 Gy < 0.03 cm3; oesophagus: V17.7 Gy < 5 cm3, V25.2 Gy < 0.03 cm3. Planners who did not fulfil the protocol requirements were asked to re-optimize the plans, using the results of planners with the same technology. Statistical analysis was performed to assess correlations between dosimetric results and planning parameters. A quality index (QI) was defined for scoring plans.

Results

In all, 12.5% of plans did not meet the protocol requirements. After re-optimization, 98% of plans fulfilled the constraints, showing the positive impact of knowledge sharing. Statistical analysis showed a significant correlation (p < 0.05) between the homogeneity index (HI) and PTV coverage for both cases, while the correlation between HI and spinal cord sparing was significant only for the single dorsal PTV case. Moreover, the multileaf collimator leaf thickness correlated with the spinal cord sparing. Planners using comparable delivery/planning system techniques produced different QI, highlighting the impact of the planner’s skills in the optimization process.

Conclusion

Both the technology and the planner’s skills are fundamentally important in spine SBRT planning optimization. Knowledge sharing helped to follow the plan objectives.

Keywords

Crowd knowledge-based optimization Stereotactic body radiation therapy Radiotherapy Spine metastasis Treatment planning 

SBRT-Planung bei Wirbelsäulenmetastasen: Indikationen aus einer großen Multizenterstudie

Zusammenfassung

Hintergrund

Die dosimetrische Variabilität in der Bestrahlungsplanung der spinalen stereotaktischen Körperstamm-Strahlentherapie (SBRT) wurde in einer großen Anzahl von Kliniken untersucht, um eine Gruppenwissen-abhängige Lösung zu finden.

Methoden

Zwei spinale Behandlungsfälle wurden von 48 Planern (38 Kliniken) geplant. Die geforderte verschriebene Dosis (VD) lag bei 3 × 10 Gy, und die zu erreichende PTV-Abdeckung bei VVD > 90 % (minimale Anforderung: VVD > 80 %). Die Dosislimitierungen waren: „PRV spinal cord“: V18Gy < 0,35 cm3, V21.9 Gy < 0,03 cm3; „oesophagus“: V17.7 Gy < 5 cm3, V25.2 Gy < 0,03 cm3. Planer, die die Protokollanforderungen nicht erfüllten, wurden gebeten, die Pläne unter Verwendung der Ergebnisse von Planern mit der gleichen Technologie erneut zu optimieren. Eine statistische Analyse wurde durchgeführt, um die Korrelation zwischen dosimetrischen Ergebnissen und Planungsparametern zu untersuchen. Ein Qualitätsindex (QI) wurde festgelegt, um das Abschneiden der Pläne zu bestimmen.

Ergebnisse

Insgesamt 12,5 % der Pläne haben die Protokollanforderungen nicht erfüllt. Nach Reoptimierung erfüllten 98 % der Pläne die Bedingungen, was den positiven Einfluss des Wissensaustauschs zeigte. Die statistische Analyse zeigte in beiden Fällen eine signifikante Korrelation (p < 0,05) zwischen Homogenitätsindex (HI) und PTV-Abdeckung, während die Korrelation zwischen HI und Rückenmarkschonung nur für den einzelnen dorsalen PTV-Fall signifikant war. Darüber hinaus korrelierte die MLC-Blattdicke mit der Schonung des Rückenmarks. Planer, die vergleichbare Bestrahlungs‑/Planungssystem-Techniken nutzen, produzierten unterschiedliche QI, was den Einfluss der Erfahrungen des Planers im Optimierungsprozess verdeutlichte.

Schlussfolgerung

Sowohl die Technologie als auch die Erfahrungen des Planers sind für die Optimierung der spinalen SBRT-Planung äußerst wichtig. Der Wissensaustausch half dabei, die Planungsbedingungen erfüllen zu können.

Schlüsselwörter

Gruppenwissen-abhängige Optimierung Stereotaktische Körperstamm-Strahlentherapie Strahlentherapie Spinale Metastase Behandlungsplanung 

Notes

Acknowledgements

The authors thank Miss Verlie Jones, dosimetrist at the European Institute of Oncology, for her editorial assistance in English.

Conflict of interest

M. Esposito, L. Masi, M. Zani, R. Doro, D. Fedele, C. Garibaldi, S. Clemente, C. Fiandra, F.R. Giglioli, C. Marino, L. Orsingher, S. Russo, M. Stasi, L. Strigari, E. Villaggi and P. Mancosu declare that they have no competing interests.

Supplementary material

66_2018_1383_MOESM1_ESM.doc (168 kb)
Statistical analysis

References

  1. 1.
    Benedict SH, Yenice KM, Followill D et al (2010) Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys 37(8):4078–4101CrossRefGoogle Scholar
  2. 2.
    Moore KL, Brame RS, Low DA et al (2012) Quantitative metrics for assessing plan quality. Semin Radiat Oncol 22(1):62–69CrossRefGoogle Scholar
  3. 3.
    Nelms BE, Robinson G, Markham J et al (2012) Variation in external beam treatment plan quality: an inter-institutional study of planners and planning systems. Pract Radiat Oncol 2(4):296–305CrossRefGoogle Scholar
  4. 4.
    Das IJ, Andersen A, Chen ZJ et al (2017) State of dose prescription and compliance to international standard (ICRU-83) in intensity modulated radiation therapy among academic institutions. Pract Radiat Oncol 7(29):e145–e155CrossRefGoogle Scholar
  5. 5.
    Song T, Li N, Zarepisheh M et al (2016) An automated treatment plan quality control tool for intensity-modulated radiation therapy using a voxel-weighting factor-based re-optimization algorithm. PLoS ONE 11(3):e149273CrossRefGoogle Scholar
  6. 6.
    Good D, Lo J, Lee WR et al (2013) A knowledge-based approach to improving and homogenizing intensity modulated radiation therapy planning quality among treatment centers: an example application to prostate cancer planning. Int J Radiat Oncol Biol Phys 87(1):176–181CrossRefGoogle Scholar
  7. 7.
    Voet PW, Dirkx ML, Breedveld S et al (2014) Fully automated volumetric modulated arc therapy plan generation for prostate cancer patients. Int J Radiat Oncol Biol Phys 88:1175–1179CrossRefGoogle Scholar
  8. 8.
    Hazell I, Bzdusek K, Kumar P et al (2016) Automatic planning of head and neck treatment plans. J Appl Clin Med Phys 17(1):272–282CrossRefGoogle Scholar
  9. 9.
    Wu B, Kusters M, Kunze-busch M et al (2017) Cross-institutional knowledge-based planning (KBP) implementation and its performance comparison to auto-planning engine (APE). Radiother Oncol 123(1):57–62CrossRefGoogle Scholar
  10. 10.
    Guckenberger M, Sweeney RA, Flickinger JC et al (2011) Clinical practice of image-guided spine radiosurgery—results from an international research consortium. Radiat Oncol 6(1):172CrossRefGoogle Scholar
  11. 11.
    Ahmed KA, Stauder MC, Miller RC et al (2012) Stereotactic body radiation therapy in spinal metastases. Int J Radiat Oncol Biol Phys 82(5):e803–e809CrossRefGoogle Scholar
  12. 12.
    Ryu S, James JL, Gerszten PC et al (2013) RTOG 0631 phase II/III study of image-guided stereotactic radiosurgery/SBRT for localized spine metastases: phase II results. J Radiosurg SBRT 2:176–177Google Scholar
  13. 13.
    Descovich M, Carrara M, Morlino S et al (2013) Improving plan quality and consistency by standardization of dose constraints in prostate cancer patients treated with Cyberknife. J Appl Clin Med Phys 14(5):162–172CrossRefGoogle Scholar
  14. 14.
    Cox BW, Spratt DE, Lovelock M et al (2012) International Spine Radiosurgery Consortium Consensus Guidelines for target volume definition in spinal stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 83(5):e597–e605CrossRefGoogle Scholar
  15. 15.
    Papanikolaou N, Battista JJ, Boyer AL et al (2004) Tissue inhomogeneity corrections for megavoltage photon beams. AAPM Rep 85:1–142Google Scholar
  16. 16.
    The International Commission on Radiation Units and Measurements (2014) Report 91. Journal of the International Commission on Radiation Units and Measurements, vol 14, pp 1–160Google Scholar
  17. 17.
    Blanck O, Wang L, Baus W et al (2016) Inverse treatment planning for spinal robotic radiosurgery: an international multi-institutional benchmark trial. J Appl Clin Med Phys 17(3):313–330CrossRefGoogle Scholar
  18. 18.
    Mancosu P, Esposito M, Giglioli F et al (2017) Time for crowd knowledge-based approach in SBRT planning. Strahlenther Onkol 193(12):1066–1067.  https://doi.org/10.1007/s00066-017-1214-x CrossRefGoogle Scholar
  19. 19.
    Schiff PB (2017) Dose dissonance in radiation oncology: consensus needed when prescribing dose in radiation therapy. Pract Radiat Oncol 7(2):e145–e155CrossRefGoogle Scholar
  20. 20.
    Giglioli FR, Strigari L, Ragona R et al (2016) Lung stereotactic ablative body radiotherapy: a large scale multi-institutional planning comparison for interpreting results of multi-institutional studies. Phys Med 32(4):600–606CrossRefGoogle Scholar
  21. 21.
    Giglioli FR, Clemente S, Esposito M et al (2017) Frontiers in planning optimization for lung SBRT. Phys Med 2017(44):163–170.  https://doi.org/10.1016/j.ejmp.2017.05.064 CrossRefGoogle Scholar
  22. 22.
    Esposito M, Maggi G, Marino C et al (2016) Multicentre treatment planning inter-comparison in a national context: the liver stereotactic ablative radiotherapy case. Phys Med 32(1):277–283CrossRefGoogle Scholar
  23. 23.
    Fleckenstein J, Boda-Heggemann J, Siebenlist K et al (2018) Non-coplanar VMAT combined with non-uniform dose prescription markedly reduces lung dose in breath-hold lung SBRT. Strahlenther Onkol.  https://doi.org/10.1007/s00066-018-1316-0 Google Scholar
  24. 24.
    Moustakis C, Blanck O, Ebrahimi Tazehmahalleh F et al (2017) Planning benchmark study for SBRT of early stage NSCLC: results of the DEGRO working group stereotactic radiotherapy. Strahlenther Onkol 193(10):780–790.  https://doi.org/10.1007/s00066-017-1151-8 CrossRefGoogle Scholar
  25. 25.
    Yang J, Ma L, Wang XS et al (2016) Dosimetric evaluation of 4 different treatment modalities for curative-intent stereotactic body radiation therapy for isolated thoracic spinal metastases. Med Dosim 41(2):105–112CrossRefGoogle Scholar
  26. 26.
    Nalichowski A, Kaufman I, Gallo J et al (2017) Single fraction radiosurgery/stereotactic body radiation therapy (SBRT) for spine metastasis: a dosimetric comparison of multiple delivery platforms. J Appl Clin Med Phys 18(1):164–169.  https://doi.org/10.1002/acm2.12022 Google Scholar
  27. 27.
    Moustakis C, Chan MKH, Kim J et al (2018) Treatment planning for spinal radiosurgery. A competitive multiplatform benchmark challenge. Strahlenther Onkol 194(9):843–854.  https://doi.org/10.1007/s00066-018-1314-2 CrossRefGoogle Scholar
  28. 28.
    Buergy D, Sharfo AWM, Heijmen BJ et al (2017) Fully automated treatment planning of spinal metastases—a comparison to manual planning of volumetric modulated arc therapy for conventionally fractionated irradiation. Radiat Oncol 12(1):33CrossRefGoogle Scholar
  29. 29.
    Marino C, Villaggi E, Maggi G et al (2015) A feasibility dosimetric study on prostate cancer. Are we ready for a multicenter clinical trial on SBRT? Strahlenther Onkol 191(7):573–581CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Marco Esposito
    • 1
    Email author
  • Laura Masi
    • 2
  • Margherita Zani
    • 2
  • Raffaela Doro
    • 2
  • David Fedele
    • 3
  • Cristina Garibaldi
    • 4
  • Stefania Clemente
    • 5
  • Christian Fiandra
    • 6
  • Francesca Romana Giglioli
    • 7
  • Carmelo Marino
    • 8
  • Laura Orsingher
    • 9
  • Serenella Russo
    • 1
  • Michele Stasi
    • 10
  • Lidia Strigari
    • 11
  • Elena Villaggi
    • 12
  • Pietro Mancosu
    • 13
  1. 1.Medical Physics Complex UnitAzienda USL Toscana CentroBagno a RipoliItaly
  2. 2.Department of Medical Physics and Radiation OncologyIFCAFlorenceItaly
  3. 3.Medical Physics Complex UnitAzienda USL Toscana CentroPistoiaItaly
  4. 4.Radiation Research UnitEuropean Institute of Oncology IRCCSMilanItaly
  5. 5.UOS di Fisica Sanitaria e RadioprotezioneAzienda Ospedaliera Universitaria Federico IINaplesItaly
  6. 6.Department of Oncology, Radiation Oncology UnitUniversity of TurinTurinItaly
  7. 7.A.O.U. Città della Salute e della Scienza di TorinoTurinItaly
  8. 8.Medical Physics DepartmentHumanitas C.C.O.CataniaItaly
  9. 9.UOC Fisica SanitariaAzienda ULSS2 Marca TrevigianaTrevisoItaly
  10. 10.Department of Medical PhysicsAzienda Ospedaliera Ordine Mauriziano di TorinoTurinItaly
  11. 11.Laboratory of Medical Physics and Expert Systems, Regina Elena National CancerInstitute IFORomeItaly
  12. 12.S.C. Fisica SanitariaAzienda Unità Sanitaria Locale (AUSL) PiacenzaPiacenzaItaly
  13. 13.Medical Physics Unit of Radiotherapy Dept.Humanitas Clinical and Research HospitalRozzanoItaly

Personalised recommendations