Strahlentherapie und Onkologie

, Volume 195, Issue 1, pp 77–82 | Cite as

Heart-sparing volumetric modulated arc therapy for whole lung irradiation

  • Alexandros PapachristofilouEmail author
  • Anna-Lena Hottinger
  • Oliver Weinhold
  • Yasar-Kemal Avcu
  • Tobias Finazzi
  • Tamara Diesch
  • Ulrich Schratzenstaller
Short Communication



Whole lung irradiation (WLI) is indicated for subgroups of patients with lung metastases from Wilms’ tumor (nephroblastoma). WLI has traditionally been performed with an anterior/posterior field arrangement with poor potential for heart sparing; thus, new techniques are desirable to achieve a lower dose to the heart.

Materials and methods

We utilized volumetric modulated arc therapy (VMAT) for WLI with 18 Gy in a patient with metastatic nephroblastoma. The planning results were compared against a three-dimensional (3D) conformal plan.


VMAT resulted in adequate target volume coverage with the prescribed dose. Mean heart dose was 10.2 Gy. The dose to organs at risk (OAR) was generally more favorable with VMAT when compared with a 3D-conformal radiotherapy plan.


WLI with VMAT provides superior sparing of OARs and especially a considerably lower dose to the heart.


Nephroblastoma Organ-sparing treatments Heart-sparing 

Herzschonende volumetrische Bogenbestrahlung für die Ganzlungenbestrahlung



Die Ganzlungenbestrahlung (GL-RT) ist indiziert bei Subgruppen von Patienten mit Lungenmetastasen eines Wilms-Tumors (Nephroblastom). Die GL-RT wird traditionell mit anterioren/posterioren Gegenfeldern durchgeführt und besitzt daher wenig Potenzial für eine Herzschonung. Um eine tiefere Herzdosis zu erreichen, sind neue Techniken wünschenswert.

Materialien und Methoden

Wir verwendeten eine volumetrische Bogenbestrahlung (VMAT) für eine GL-RT mit 18 Gy bei einem Patienten mit metastatischem Nephroblastom. Die Planungsresultate wurden mit einem 3‑D-konformalen Bestrahlungsplan verglichen.


Die VMAT ergab eine adäquate Zielvolumenabdeckung mit der Verschreibungsdosis. Die mittlere Herzdosis betrug 10,2 Gy. Die Dosen an den Risikoorganen (OAR) waren generell besser mit VMAT im Vergleich zum 3‑D-konformalen Bestrahlungsplan.


GL-RT mit VMAT sorgt für eine bessere Schonung der OAR und speziell für eine deutlich tiefere Dosis am Herz.


Nephroblastom Organschonende Techniken Herzschonung 


Conflict of interest

A. Papachristofilou, A.-L. Hottinger, O. Weinhold, Y.-K. Avcu, T. Finazzi, T. Diesch and U. Schratzenstaller certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.


  1. 1.
    D’Angio GJ et al (1976) The treatment of Wilms’ tumor: results of the national Wilms’ tumor study. Cancer 38:633–646CrossRefGoogle Scholar
  2. 2.
    Chemotherapy Before and After Surgery in Treating Children With Wilm’s Tumor. (1900). at Accessed: 18.06.2018
  3. 3.
    Combination Chemotherapy With or Without Radiation Therapy in Treating Young Patients With Newly Diagnosed Stage III or Stage IV Wilms’ Tumor. Clinicaltrials.Gov 7/1/2000 (1900). at Accessed: 18.06.2018
  4. 4.
    Sasso G, Greco N, Murino P, Sasso FS (2010) Late toxicity in Wilms tumor patients treated with radiotherapy at 15 years of median follow-up. J Pediatr Hematol Oncol 32:e264–7CrossRefGoogle Scholar
  5. 5.
    World Medical Association (2013) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310:2191–2194CrossRefGoogle Scholar
  6. 6.
    Verschuur A et al (2012) Treatment of pulmonary metastases in children with stage IV nephroblastoma with risk-based use of pulmonary radiotherapy. J Clin Oncol 30:3533–3539CrossRefGoogle Scholar
  7. 7.
    Gagliardi G et al (2010) Radiation dose-volume effects in the heart. Int J Radiat Oncol Biol Phys 76:77–85CrossRefGoogle Scholar
  8. 8.
    Darby SC et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368:987–998CrossRefGoogle Scholar
  9. 9.
    Corradini S et al (2018) Left-sided breast cancer and risks of secondary lung cancer and ischemic heart disease: effects of modern radiotherapy techniques. Strahlenther Onkol 194:196–205CrossRefGoogle Scholar
  10. 10.
    Sakka M, Kunzelmann L, Metzger M, Grabenbauer GG (2017) Cardiac dose-sparing effects of deep-inspiration breath-hold in left breast irradiation. Strahlenther Onkol 193:800–811CrossRefGoogle Scholar
  11. 11.
    Pein F et al (2004) Cardiac abnormalities 15 years and more after adriamycin therapy in 229 childhood survivors of a solid tumour at the Institut Gustave Roussy. Br J Cancer 91:37–44CrossRefGoogle Scholar
  12. 12.
    Tukenova M et al (2010) Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. J Clin Oncol 28:1308–1315CrossRefGoogle Scholar
  13. 13.
    Mulrooney DA et al (2016) Cardiac outcomes in adult survivors of childhood cancer exposed to cardiotoxic therapy. Ann Intern Med 164:93CrossRefGoogle Scholar
  14. 14.
    Bölling T, Könemann S, Ernst I, Willich N (2008) Late effects of thoracic irradiation in children. Strahlenther Onkol 184:289–295CrossRefGoogle Scholar
  15. 15.
    Stam B et al (2017) Heart dose associated with overall survival in locally advanced NSCLC patients treated with hypofractionated chemoradiotherapy. Radiother Oncol 125:62–65CrossRefGoogle Scholar
  16. 16.
    Bradley JD et al (2015) Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial p. Lancet Oncol 16:187–199CrossRefGoogle Scholar
  17. 17.
    Ogino I et al (2016) Symptomatische strahleninduzierte Herzerkrankung bei Langzeitüberlebenden nach Ösophaguskarzinom. Strahlenther Onkol 192:359–367CrossRefGoogle Scholar
  18. 18.
    Kalapurakal JA et al (2013) Cardiac-sparing whole lung IMRT in children with lung metastasis. Int J Radiat Oncol Biol Phys 85:761–767CrossRefGoogle Scholar
  19. 19.
    Kalapurakal JA et al (2018) Final report of a prospective clinical trial of cardiac sparing whole-lung intensity modulated radiation therapy in patients with metastatic pediatric tumors. Int J Radiat Oncol Biol Phys 96:118–S119CrossRefGoogle Scholar
  20. 20.
    Pallotta S et al (2015) Surface imaging, portal imaging, and skin marker set-up vs. CBCT for radiotherapy of the thorax and pelvis. Strahlenther Onkol 191:726–733CrossRefGoogle Scholar
  21. 21.
    Rösler P et al (2015) Hepatotoxicity after liver irradiation in children and adolescents: results from the RiSK. Strahlenther Onkol 191:413–420CrossRefGoogle Scholar
  22. 22.
    Bhatia S et al (1996) Breast cancer and other second neoplasms after childhood Hodgkin’s disease. N Engl J Med 334:745–751CrossRefGoogle Scholar
  23. 23.
    Swerdlow AJ et al (2012) Breast cancer risk after supradiaphragmatic radiotherapy for Hodgkin’s lymphoma in England and Wales: a National Cohort Study. J Clin Oncol 30:2745–2752CrossRefGoogle Scholar
  24. 24.
    Lohr F et al (2014) Novel radiotherapy techniques for involved-field and involved-node treatment of mediastinal Hodgkin lymphoma. Strahlenther Onkol 190:864–871CrossRefGoogle Scholar
  25. 25.
    Hall EJ, Wuu CS (2003) Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 56:83–88CrossRefGoogle Scholar
  26. 26.
    Zelefsky MJ et al (2012) Secondary cancers after intensity-modulated radiotherapy, brachytherapy and radical prostatectomy for the treatment of prostate cancer: incidence and cause-specific survival outcomes according to the initial treatment intervention. BJU Int 110:1696–1701CrossRefGoogle Scholar
  27. 27.
    Sakthivel V, Kadirampatti Mani G, Mani S, Boopathy R, Selvaraj J (2017) Estimating second malignancy risk in intensity-modulated radiotherapy and volumetric-modulated arc therapy using a mechanistic radiobiological model in radiotherapy for carcinoma of left breast. J Med Phys 42:234–240CrossRefGoogle Scholar
  28. 28.
    Chao PJ et al (2017) Propensity-score-matched evaluation of the incidence of radiation pneumonitis and secondary cancer risk for breast cancer patients treated with IMRT/VMAT. Sci Rep 7:1–9CrossRefGoogle Scholar
  29. 29.
    Zwahlen DR et al (2009) Effect of intensity-modulated pelvic radiotherapy on second cancer risk in the postoperative treatment of endometrial and cervical cancer. Int J Radiat Oncol Biol Phys 74:539–545CrossRefGoogle Scholar
  30. 30.
    Fogliata A et al (2017) Critical appraisal of the risk of secondary cancer induction from breast radiation therapy with volumetric modulated arc therapy relative to 3D conformal therapy. Int J Radiat Oncol Biol Phys 100(3):785–793. CrossRefGoogle Scholar
  31. 31.
    Gomarteli K et al (2017) Focus on the low-dose bath: no increased cancer risk after mediastinal VMAT versus AP/PA irradiation in a tumor-prone rat model. Int J Radiat Oncol Biol Phys 99:76–S77CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Clinic of Radiotherapy and Radiation OncologyUniversity Hospital BaselBaselSwitzerland
  2. 2.Department of Pediatric Oncology and HematologyUniversity Children’s Hospital BaselBaselSwitzerland

Personalised recommendations