Advertisement

Spinale Navigation zur dorsalen zervikalen und zervikothorakalen Instrumentierung

  • M. RichterEmail author
  • D. Ploux
Operative Techniken
  • 10 Downloads

Zusammenfassung

Operationsziel

Sichere Platzierung von zervikalen bzw. hoch-thorakalen Pedikelschrauben, transartikulären Schrauben C1/2, translaminären Schrauben oder zervikalen Massa-lateralis-Schrauben unter Verwendung der spinalen Navigation.

Indikationen

Alle dorsalen zervikalen und zervikothorakalen Instrumentierungen mit Schrauben: Instabilitäten und Deformitäten degenerativer, rheumatischer, traumatischer, neoplastischer, infektiöser, iatrogener oder kongenitaler Genese; multisegmentale zervikale Spinalkanalstenose mit Instabilität oder Kyphose der betroffenen Segmente.

Kontraindikationen

Es gibt keine absoluten Kontraindikationen für die spinale Navigation.

Operationstechnik

Bauchlage auf Gelmatte, rigide Kopffixation, z. B. mit Mayfield-Klemme; wenn indiziert, geschlossene Reposition unter Bildwandler-(BV-)Kontrolle. Mittellinienzugang über den Indexsegmenten; wenn indiziert, offene Reposition. Platzierung der Schrauben mit Hilfe der spinalen Navigation; wenn notwendig, dorsale Dekompression. Instrumentierung mit Längsträgern; ggf. dorsale Fusion nach Dekortizieren der verbliebenen dorsalen knöchernen Strukturen und dorsale Fusion mit Eigenknochen und/oder Knochenersatzstoffen.

Weiterbehandlung

Bei stabilen Instrumentierungen ist keine postoperative Ruhigstellung mit Orthesen notwendig. Entfernung der Redondrainagen nach 2–3 Tagen, Fadenzug am 14. postoperativen Tag; klinische und radiologische Verlaufskontrollen nach 3 und 12 Monaten oder bei klinischer oder neurologischer Verschlechterung.

Ergebnisse

Viele Studien konnten zeigen, dass der Einsatz der spinalen Navigation zu einer signifikanten Reduktion von Implantatfehllagen und Komplikationen führt. Die intraoperative Strahlenbelastung des Operationsteams kann um bis zu 90 % reduziert werden.

Schlüsselwörter

Halswirbelsäule C2-Wirbelkörper Wirbelsäule Bildgesteuerte Operation Computerassistierte Operation Pedikelschrauben Postoperative Komplikationen 

Spinal navigation for posterior cervical and cervicothoracic instrumentation

Abstract

Objective

Safe placement of posterior cervical or high-thoracic pedicle screws, transarticular screws C1/2, translaminar screws C2 or cervical lateral mass screws under the guidance of spinal navigation.

Indications

All posterior cervical and cervicothoracic instrumentation with screws: instabilities and deformities of rheumatoid, traumatic, neoplastic, infectious, iatrogenic or congenital origin; multilevel cervical spinal stenosis with degenerative instability or kyphosis of the affected spinal segment.

Contraindications

There are no absolute contraindications.

Surgical technique

Prone position on a gel mattress, rigid head fixation, e.g., with Mayfield tongs; if appropriate, closed reduction under lateral image intensification; midline posterior surgical approach at the level of the segments to be instrumented; if necessary, open reduction; insertion of the cervical/upper thoracic screws under the guidance of spinal navigation; if necessary, posterior decompression; instrumentation longitudinal rods; if a fusion is to be obtained, decortication of the posterior bone elements with a high-speed burr and onlay of cancellous bone or bone substitutes.

Postoperative management

In stable instrumentation, no postoperative immobilization with cervical collar is necessary. Drain removal on postoperative day 2–3, suture removal on postoperative day 14, clinical and x‑ray control 3 and 12 months after surgery or in case of clinical or neurological deterioration.

Results

Numerous studies showed that the use of spinal navigation reduces implant malplacement rates significantly. Furthermore, it allows a reduction of the radiation dose for the operation team up to 90%.

Keywords

Cervical vertebra axis C2 vertebra Spine Image-guided surgery Computer-assisted surgery Pedicel screws Postoperative complications 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Richter gibt an, dass er klinischer Autor eines zervikalen Implantatsystems ist (Neon 2 und 3, Ulrich Medical, Ulm, Deutschland) und Lizenzgebühren erhält. Er erhält Berater- und Vortragshonorare von Brainlab, München, Deutschland. D. Ploux gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Al Barbarawi MM, Allouh MZ (2015) Cervical lateral mass screw-rod fixation: Surgical experience with 2500 consecutive screws, an analytical review, and long-term outcomes. Br J Neurosurg 29:699–704CrossRefGoogle Scholar
  2. 2.
    Amiot L‑P, Labelle H, DeGuise JA et al (1995) Computer-assisted pedicle screw fixation. A feasibility study. Spine 20:1208–1212CrossRefGoogle Scholar
  3. 3.
    Bydon M, Xu R, Amin AG et al (2014) Safety and efficacy of pedicle screw placement using intraoperative computed tomography: Consecutive series of 1148 pedicle screws. J Neurosurg Spine 21:320–328CrossRefGoogle Scholar
  4. 4.
    Costa F, Ortolina A, Attuati L et al (2015) Management of C1–2 traumatic fractures using an intraoperative 3D imaging-based navigation system. J Neurosurg Spine 22:128–133CrossRefGoogle Scholar
  5. 5.
    Dea N, Fisher CG, Batke J et al (2016) Economic evaluation comparing intraoperative cone beam CT-based navigation and conventional fluoroscopy for the placement of spinal pedicle screws: A patient-level data cost-effectiveness analysis. Spine J 16:23–31CrossRefGoogle Scholar
  6. 6.
    Dewey P, Incoll I (1998) Evaluation of thyroid shields for reduction of radiation exposure to orthopaedic surgeons. Aust N Z J Surg 68:635–636CrossRefGoogle Scholar
  7. 7.
    Gebhard FT, Kraus MD, Schneider E et al (2006) Does computer-assisted spine surgery reduce intraoperative radiation doses? Spine 31:2024–2027CrossRefGoogle Scholar
  8. 8.
    Guha D, Jakubovic R, Gupta S et al (2017) Spinal intraoperative three dimensional navigation: Correlation between clinical and absolute engineering accuracy. Spine J 17:489–498CrossRefGoogle Scholar
  9. 9.
    Guppy KH, Chakrabarti I, Banerjee A (2014) The use of intraoperative navigation for complex upper cervical spine surgery. Neurosurg Focus 36:E5CrossRefGoogle Scholar
  10. 10.
    Holly LT, Foley KT (2003) Intraoperative spinal navigation. Spine 28:S54–S61PubMedGoogle Scholar
  11. 11.
    Hott JS, Papadopoulos SM, Theodore N et al (2004) Intraoperative iso-C C‑arm navigation in cervical spine surgery. Review of the first 52 cases. Spine 29:2856–2860CrossRefGoogle Scholar
  12. 12.
    Ishikawa Y, Kanemura T, Yoshida G et al (2012) Intraoperative, full rotation, three-dimensional image (O-arm)-based navigation system for cervical pedicle screw insertion. J Neurosurg Spine 15:472–478CrossRefGoogle Scholar
  13. 13.
    Kothe R, Rüther W, Schneider E et al (2004) Biomechanical analysis of transpedicular screw fixation in the subaxial cervical spine. Spine 29:1869–1875CrossRefGoogle Scholar
  14. 14.
    Kovanda TJ, Ansari SF, Qaiser R et al (2015) Feasibility of CT-based intraoperative 3D stereotactic image-guided navigation in the upper cervical spine of children 10 years of age or younger: Initial experience. J Neurosurg Pediatr 16:590–598CrossRefGoogle Scholar
  15. 15.
    Laine T, Schlenzka D, Makitalo K et al (1997) Improved accuracy of pedicle screw insertion with computer-assisted surgery. A prospective clinical trial of 30 patients. Spine 22:1254–1258CrossRefGoogle Scholar
  16. 16.
    Ludwig SC, Kowalski JM, Edwards CC et al (2000) Cervical pedicle screws. Comparative accuracy of two insertion techniques. Spine 25:2675–2681CrossRefGoogle Scholar
  17. 17.
    Ludwig SC, Kramer DL, Balderston RA et al (2000) Placement of pedicle screws in the human cadaveric cervical spine. Comparative accuracy of three techniques. Spine 25:1655–1667CrossRefGoogle Scholar
  18. 18.
    Mac-Thiong J‑M, Parent S, Poitras B et al (2013) Neurological outcome and management of pedicle screws misplaced totally within the spinal canal. Spine 38:229–237CrossRefGoogle Scholar
  19. 19.
    Manbachi A, Cobbold RS, Ginsberg HJ (2014) Guided pedicle screw insertion: Techniques and training. Spine J 14:165–179CrossRefGoogle Scholar
  20. 20.
    Mason A, Paulsen R, Babuska JM et al (2014) The accuracy of pedicle screw placement using image guidance systems. A systematic review. J Neurosurg Spine 20:196–203CrossRefGoogle Scholar
  21. 21.
    Mastrangelo G, Fedeli U, Fadda E et al (2005) Increased cancer risk among surgeons in an orthopaedic hospital. Occup Med (Lond) 55:498–500CrossRefGoogle Scholar
  22. 22.
    Mendelsohn D, Strelzow J, Dea N et al (2016) Patient and surgeon radiation exposure during spinal instrumentation using intraoperative computed tomography-based navigation. Spine J 16:343–354CrossRefGoogle Scholar
  23. 23.
    Navarro-Ramirez R, Lang G, Lian X et al (2017) Total navigation in spine surgery; a concise guide to elminate fluoroscopy using a intraoperative computed tomography 3‑dimensional navigation system. World Neurosurg 100:325–335CrossRefGoogle Scholar
  24. 24.
    Nolte L‑P, Zamorano LJ, Jiang Z et al (1995) Image-guided insertion of transpedicular screws. A laboratory set-up. Spine 20:497–500CrossRefGoogle Scholar
  25. 25.
    Nottmeier EW, Pirris SM, Edwards S et al (2013) Operating room radiation exposure in cone beam computed tomography-based, image-guided spinal surgery. J Neurosurg Spine 19:226–231CrossRefGoogle Scholar
  26. 26.
    Pisapia JM, Nayak NR, Salinas RD et al (2017) Navigated odontoid screw placement using the O‑arm: Technical note and case series. J Neurosurg Spine 26:10–18CrossRefGoogle Scholar
  27. 27.
    Rampersaud YR, Foley KT, Shen AC et al (2000) Radiation exposure of the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine 25:2637–2645CrossRefGoogle Scholar
  28. 28.
    Rahmathulla G, Nottmeier E, Pirris SM et al (2014) Intraoperative image-guided spinal navigation: Technical pitfalls and their avoidance. Neurosurg Focus 36:E3CrossRefGoogle Scholar
  29. 29.
    Richter M, Cakir B, Schmidt R (2005) Cervical pedicle screws: Conventional versus computer-assisted placement of cannulated screws. Spine 30:2280–2287CrossRefGoogle Scholar
  30. 30.
    Richter M, Mattes T, Cakir B (2004) Computer-assisted posterior instrumentation of the cervical and cervico-thoracic spine. Eur Spine J 13:50–59CrossRefGoogle Scholar
  31. 31.
    Richter M, Schmidt R, Claes L (2002) Posterior atlantoaxial fixation. Biomechanical comparison of six different techniques. Spine 27:1724–1732CrossRefGoogle Scholar
  32. 32.
    Richter M, Amiot L‑P, Neller S et al (2000) Computer-assisted surgery in posterior instrumentation of the cervical spine: An in-vitro feasibility study. Eur Spine J 9:S65–S70CrossRefGoogle Scholar
  33. 33.
    Schmidt R, Wilke H‑J, Claes L et al (2003) Pedicle screws enhance primary stability in multilevel cervical corporectomies: Biomechanical in vitro comparison of different implants including constrained and nonconstrained posteriorinstrumentations. Spine 28:1821–1822CrossRefGoogle Scholar
  34. 34.
    Shimokawa N, Takami T (2017) Surgical safety of pedicle screw placement with computer navigation system. Neurosurg Rev 40:251–258CrossRefGoogle Scholar
  35. 35.
    Shin BJ, James AR, Njoku IU et al (2012) Pedicle screw navigation: A systematic review and meta-analysis of perforation risk for computer-navigated versus freehand insertion. J Neurosurg Spine 17:113–122CrossRefGoogle Scholar
  36. 36.
    Tian N‑F (2009) Image guided pedicle screw insertion accuracy: A meta-analysis. Int Orthop 33:895–903CrossRefGoogle Scholar
  37. 37.
    Tjardes T, Shafizadeh S, Rixen D et al (2010) Image guided surgery: State of the art and future directions. Eur Spine J 19:25–45CrossRefGoogle Scholar
  38. 38.
    Uehara M, Takahashi J, Ikegami S et al (2014) Screw perforation features in 129 consecutive patients performed computer-guided cervical pedicle screw insertion. Eur Spine J 23:2189–2195CrossRefGoogle Scholar
  39. 39.
    Villard J, Ryang Y‑M, Demetriades AK et al (2014) Radiation exposure to the surgeon and the patient during posterior lumbar spinal instrumentation. Spine 39:1004–1009CrossRefGoogle Scholar
  40. 40.
    Weidner A, Wähler M, Chiu ST et al (2000) Modification of C1–C2 transarticular screw fixation by image-guided surgery. Spine 25:2668–2674CrossRefGoogle Scholar
  41. 41.
    Richter M (2003) Dorsale Instrumentierung der Halswirbelsäule mit dem „neon occipito-cervical system“. Teil 1: Atlantoaxiale Instrumentierung. Oper Orthop Traumatol 15:70–89CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.WirbelsäulenzentrumSt.-Josefs Hospital GmbHWiesbadenDeutschland

Personalised recommendations