3D image-guided surgery for fragility fractures of the sacrum

  • Horst BallingEmail author
Surgical Technique



Stabilizing sacral fragility fractures without radiation exposure to the surgical team.


Non-displaced or minimally displaced unilateral or bilateral transalar, transforaminal or central sacral fractures in weak and osteoporotic bone.


Displaced or highly unstable sacral fractures. Patients under therapeutic anticoagulation. Patients needing fast track orthopedic surgery.

Surgical technique

Prone position. Reference clamp installation on posterior iliac crest. Initial 3D scan of posterior pelvic ring. Image-guided virtual determination of 2–3 interforaminal iliosacroiliac trajectories in sacral vertebrae I and II. Lateral transgluteal mini-open approach. 3D image-guided insertion of 2–3 guide wires along planned trajectories. 3D-scan for controlling guide wire positions. Virtual determination of screw lengths. Cortical drilling and cannulated screw insertion along guide wires. Radiological documentation.


Clinical and radiological follow-up after 12 weeks, 12 and 24 months including radiographs in anteroposterior, lateral, inlet and outlet views.


From October 2011 until October 2016 a total of 124 sacral fracture sites (in sacral vertebrae I and II) were treated with 120 navigated sacral screws in 52 patients (48 females, 4 males; mean age 76 ± 10 years, range 36–90 years) using 3D image guidance for screw placement. Image-guidance accuracy was 99.2% (119/120 screws correctly placed). Complications comprised revision surgery for subfascial hematoma evacuation (n = 1) and screw removal due to loosening after 12 weeks (n = 2). Four patients died before final follow-up. Mean pain visual analogue scale (VAS) decreased from 8.9 ± 1.1 (presurgery value) over 3.6 ± 1.7 (postsurgery value) to 1.8 ± 1.9 (2-year follow-up value), mean Oswestry disability index (ODI) improved from 86.2 ± 4.9% (presurgery value) over 28.5 ± 9.5% (postsurgery value) to 23.3 ± 13.7% (2-year follow-up value).


Navigation Posterior pelvic ring 3D-Fluoroscopy Sacral screw fixation Sacral fractures 

Die 3D-navigierte operative Versorgung von Fragilitätsfrakturen des Sakrums



Belastungsstabile Schraubenosteosynthese nichtdislozierter Sakrumfrakturen ohne Strahlenbelastung des OP-Personals.


Nicht-/wenig dislozierte ein-/beidseitige und zentrale Sakrumfrakturen bei reduzierter Knochenqualität/Osteoporose.


Dislozierte/hochgradig instabile Sakrumfrakturen. Therapeutische Antikoagulation. Kreislaufinstabilität.


Bauchlagerung. Installieren der Navigationsreferenz am hinteren Beckenkamm. 3‑D-Scan des hinteren Beckenrings. Navigierte virtuelle Festlegung von 2–3 interforaminalen iliosakralen Trajektorien im 1. und 2. Sakralwirbel. Minimal-invasiver lateraler transglutealer Zugang. Navigiertes Einbringen von 2–3 Führungsdrähten entlang der geplanten Trajektorien. 3‑D-Scan zur Kontrolle der Führungsdrahtlage. Virtuelle Schraubenlängenbestimmung. Führungsdrahtgeführtes Aufbohren der Kortikalis und Eindrehen der Schrauben. Röntgendokumentation.


Klinisch-radiologische Nachuntersuchungen nach 12 Wochen, 12 und 24 Monaten mit Röntgenaufnahmen in anteroposteriorem und lateralem Strahlengang sowie Inlet/Outlet-Aufnahmen.


Von Oktober 2011 bis Oktober 2016 wurden 52 Patienten (48 Frauen, 4 Männer, Durchschnittsalter 76 ± 10 [Spannweite: 36–90] Jahre) mit insgesamt 124 sakralen Frakturen (S1, S2) mittels 120 navigiert eingebrachter Schrauben versorgt. Die Schraubenplatzierungsgenauigkeit betrug 99,2 % (119/120 korrekt platzierte Schrauben). Komplikationen erforderten Revisionsoperationen bei subfaszialem Hämatom (n = 1) und Schraubenlockerung nach 12 Wochen (n = 2). Nach 2 Jahren waren 4 Patienten verstorben. Im verbliebenen Kollektiv hatte sich das Schmerzniveau von 8,9 ± 1,1 (präoperativ) auf 3,6 ± 1,7 (postoperativ) bis auf 1,8 ± 1,9 (2-Jahres-Nachuntersuchung) VAS-Punkte (visuelle Analogskala), der ODI (Oswestry-Disability-Index) von 86,2 ± 4,9 % (präoperativ) über 28,5 ± 9,5 % (postoperativ) auf 23,3 ± 13,7 % (zum 2‑Jahres-Nachuntersuchungszeitpunkt) gebessert.


Navigation Hinterer Beckenring 3D-Fluoroskopie Sakrale Schraubenosteosynthese Sakrumfrakturen 


Compliance with ethical guidelines

Conflict of interest

H. Balling declares that he has no competing interests.

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975 (in its most recently amended version). Informed consent was obtained from all patients included in the study. Additional informed consent was obtained from all individual participants for whom identifying information is included in this article.


  1. 1.
    Balling H (2018) Time demand and radiation dose in 3D-fluoroscopy-based navigation-assisted 3D-fluoroscopy-controlled pedicle screw instrumentations. Spine 43(9):E512–E519. CrossRefGoogle Scholar
  2. 2.
    Behrendt D, Mütze M, Steinke H, Koestler M, Josten C, Böhme J (2012) Evaluation of 2D and 3D navigation for iliosacral screw fixation. Int J Comput Assist Radiol Surg 7(2):249–255. CrossRefGoogle Scholar
  3. 3.
    van den Bosch EW, van Zwienen CM, van Vugt AB (2002) Fluoroscopic positioning of sacroiliac screws in 88 patients. J Trauma 53:44–48CrossRefGoogle Scholar
  4. 4.
    Gänsslen A, Hüfner T, Krettek C (2006) Percutaneous iliosacral screw fixation of unstable pelvic injuries by conventional fluoroscopy. Oper Orthop Traumatol 18:225–244CrossRefGoogle Scholar
  5. 5.
    Gardner MJ, Routt ML Jr (2011) Transiliac-transsacral screws for posterior pelvic stabilization. J Orthop Trauma 25(6):378–384. CrossRefGoogle Scholar
  6. 6.
    German Federal Department for Radiation Control (2010) Announcement on updated diagnostic reference levels for diagnostic and interventional radiologic examinationsGoogle Scholar
  7. 7.
    Lucas JF, Routt ML Jr, Eastman JG (2017) A useful preoperative planning technique for transiliac-transsacral screws. J Orthop Trauma 31(1):e25–e31. CrossRefGoogle Scholar
  8. 8.
    Mendel T, Noser H, Wohlrab D, Stock K, Radetzki F (2011) The lateral sacral triangle—a decision support for secure transverse sacroiliac screw insertion. Injury 42:1164–1170CrossRefGoogle Scholar
  9. 9.
    Richter PH, Gebhard F, Dehner C, Scola A (2016) Accuracy of computer-assisted iliosacral screw placement using a hybrid operating room. Injury 47(2):402–407. CrossRefGoogle Scholar
  10. 10.
    Routt ML Jr, Simonian PT, Mills WJ (1997) Iliosacral screw fixation: Early complications of the percutaneous technique. J Orthop Trauma 11:584–589CrossRefGoogle Scholar
  11. 11.
    Takao M, Nishii T, Sakai T, Sugano N (2013) CT-3D-fluoroscopy matching navigation can reduce the malposition rate of iliosacral screw insertion for less-experienced surgeons. J Orthop Trauma 27(12):716–721. CrossRefGoogle Scholar
  12. 12.
    Thakkar SC, Thakkar RS, Sirisreetreerux N, Carrino JA, Shafiq B, Hasenboehler EA (2017) 2D versus 3D fluoroscopy-based navigation in posterior pelvic fixation: review of the literature on current technology. Int J Comput Assist Radiol Surg 12(1):69–76. CrossRefGoogle Scholar
  13. 13.
    Tonetti J, Cazal C, Eid A, Badulescu A, Martinez T, Vouaillat H, Merloz P (2004) Neurological damage in pelvic injuries: a continuous prospective series of 50 pelvic injuries treated with an iliosacral lag screw. Rev Chir Orthop Reparatrice Appar Mot 90(2):122–131CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Spine SurgeryNeckar-Odenwald-Kliniken gGmbH BuchenBuchenGermany

Personalised recommendations