Skip to main content

Advertisement

Log in

Die Masquelet-Technik zur Behandlung großer dia- und metaphysärer Knochendefekte

Masquelet technique for the treatment of large dia- and metaphyseal bone defects

  • Operative Techniken
  • Published:
Operative Orthopädie und Traumatologie Aims and scope Submit manuscript

Zusammenfassung

Operationsziel

Behandlung großer dia- und metaphysärer Knochendefekte (> 3 cm) in zwei operativen Eingriffen mit einem zeitlichen Abstand von 4–8 Wochen.

Indikationen

Dia- und metaphysäre Knochendefekte vorwiegend am Unter- und Oberschenkel.

Kontraindikationen

Knochendefekte mit Gelenkbeteiligung, persistierender Knocheninfekt oder Osteomyelitis, insuffiziente Weichteildeckung im Bereich des Knochendefekts, Osteoporose.

Operationstechnik

Ersteingriff: Ausgiebiges Knochendébridement und Weichteildeckung, Einbringen eines Zementspacers in den Knochendefekt zur Induktion einer synovialen Fremdkörpermembran, interne oder externe Stabilisierung. Zweiteingriff: Entfernen des Zementspacers und Füllung des von der induzierten Membran umgebenen Knochendefekts mit autologer Spongiosa, ggf. Verfahrenswechsel auf eine interne Fixation.

Weiterbehandlung

Schmerzabhängige Teil- bis Vollbelastung nach dem Ersteingriff. Abrollende Mobilisation nach dem Zweiteingriff bis zum Auftreten von radiologischen Zeichen eines Remodellings des Regenerats. In der Regel Belassen des Implantats.

Ergebnisse

Insgesamt wurden 6 Patienten (4 Männer, 2 Frauen) im Alter von 15–66 Jahren mit Knochendefekten von durchschnittlich 7 cm (Spanne 4–10 cm) mit der Masquelet-Technik behandelt. Es handelte sich um 2 femorale aseptische Pseudarthrosen und 4 tibiale Pseudarthrosen (je 2 septische und aseptische Pseudarthrosen), dabei in einem Fall um eine periprothetische Pseudarthrose an der Tibia bei schaftgeführter Knieprothese. Die Stabilisierung nach Débridement erfolgte an der Tibia in allen Fällen zunächst mit einem Ringfixateur, am Femur einmal mit einem Marknagel und einmal mit einer winkelstabilen Platte. Der Zweiteingriff wurde zwischen 6 und 9 Wochen nach dem Ersteingriff durchgeführt. Dabei wurde in 3 von 4 Fällen an der Tibia ein Verfahrenswechsel auf eine interne Fixation durchgeführt. Die Spongiosa wurde entweder vom Beckenkamm oder in RIA-Technik („Reamer-Irrigator-Aspirator“) entnommen. Bei der Patientin mit dem periprothetischen Knochendefekt kam es nach 5 Monaten zu einem Plattenbruch und konsekutiver Unterschenkelamputation. In einem Fall wurde aufgrund einer Pseudarthrose an der Andockstelle eine lokale Spongiosaplastik durchgeführt. Alle Patienten waren nach 6 Monaten schmerzfrei und vollbelastend mobil. Der Ilizarov-Fixateur konnte bei einem 15-jährigen Patienten 5 Monate nach dem Zweiteingriff entfernt werden. Die restlichen Implantate wurden belassen.

Abstract

Objective

Treatment of large dia- and metaphyseal bone defects (> 3 cm) with two surgical interventions with an interval of 4–8 weeks.

Indications

Dia- and metaphyseal bone defects predominantly of the lower extremity.

Contraindications

Intraarticular bone defects, persisting bone infection or osteomyelitis, insufficient soft tissue coverage in the region of the bone defect, osteoporosis.

Surgical technique

First surgical intervention: thorough bone debridement and soft tissue coverage, implantation of a cement spacer into the bone defect for the induction of a synovial foreign-body membrane, internal or external fixation. Second surgical intervention: removal of the cement spacer and filling of the bone defect with autologous cancellous bone graft, optionally internal fixation after initial external fixation.

Postoperative management

Partial to full weight-bearing after the first surgical intervention depending on pain. Partial weight-bearing (max. 15 kg) after the second surgical intervention, until radiological signs of a remodeling of the regenerate bone occur. Usually no implant removal.

Results

A total of 6 patients (4 men, 2 women) aged 15–66 years with average bone defects of 7 cm (range 4–10 cm) were treated using the Masquelet technique. There were 2 aseptic femoral nonunions and 4 tibial nonunions (2 septic and 2 aseptic nonunions). One case was a periprosthetic tibial bone defect. Bone stabilization after debridement was performed using ring fixators on the tibia and an intramedullary nail and a locking plate on the femur, respectively. The second surgical intervention was performed after 6–9 weeks. In 3 of the 4 tibial cases, internal fixation was performed during this intervention. The iliac crest and the RIA (reamer–irrigator–aspirator) technique were used for cancellous bone grafting. Amputation after breakage of the plate was necessary in the patient with the periprosthetic bone defect. Nonunion at the docking site required cancellous bone grafting in 1 patient. All 5 patients were able to perform full weight-bearing without pain after 6 months. The Ilizarov fixator was removed 5 months after the second surgical intervention in a 15-year-old patient. None of the other implants were removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10

Literatur

  1. Apard T, Bigorre N, Cronier P et al (2010) Two-stage reconstruction of post-traumatic segmental tibia bone loss with nailing. Orthop Traumatol Surg Res 96:549–553

    Article  CAS  PubMed  Google Scholar 

  2. Biau DJ, Pannier S, Masquelet AC et al (2009) Case report: reconstruction of a 16-cm diaphyseal defect after Ewing’s resection in a child. Clin Orthop Relat Res 467:572–577

    Article  PubMed Central  PubMed  Google Scholar 

  3. Bobroff G, Gold S, Zinar D (2003) Ten year experience with use of Ilizarov bone transport for tibial defects. Bull Hosp Jt Dis 61:101–107

    PubMed  Google Scholar 

  4. Bumbasirevic M, Tomic S, Lesic A et al (2010) War-related infected tibial nonunion with bone and soft-tissue loss treated with bone transport using the Ilizarov method. Arch Orthop Trauma Surg 130:739–749

    Article  PubMed  Google Scholar 

  5. Catros S, Zwetyenga N, Bareille R et al (2009) Subcutaneous-induced membranes have no osteoinductive effect on macroporous HA-TCP in vivo. J Orthop Res 27:155–161

    Article  PubMed  Google Scholar 

  6. Cox G, Jones E, McGonagle D et al (2011) Reamer-irrigator-aspirator indications and clinical results: a systematic review. Int Orthop 35:951–956

    Article  PubMed Central  PubMed  Google Scholar 

  7. Dimitriou R, MAtaliotakis GI, Angoules AG et al (2011) Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury 42:S3–S15

    Article  PubMed  Google Scholar 

  8. Donegan DJ, Scolaro J, Matuszewski PE et al (2011) Staged bone grafting following placement of an antibiotic spacer block for the management of segmental long bone defects. Orthopedics 34:730–735

    Google Scholar 

  9. Flamans B, Pauchot J, Petite H et al (2010) Use of the induced membrane technique for the treatment of bone defects in the hand or wrist, in emergency. Chir Main 29:307–314

    Article  CAS  PubMed  Google Scholar 

  10. Freund R, Wolff TW, Freund B (2000) Silicone block interposition for traumatic bone loss. Orthopedics 23:795–804

    CAS  PubMed  Google Scholar 

  11. Gan AW, Puhaindran ME, Pho RW (2013) The reconstruction of large bone defects in the upper limb. Injury 44:313–317

    Article  PubMed  Google Scholar 

  12. Georgiadis GM, DeSilva SP (1995) Reconstruction of skeletal defects in the forearm after trauma: treatment with cement spacer and delayed cancellous bone grafting. J Trauma 38:910–914

    Article  CAS  PubMed  Google Scholar 

  13. Giannoudis PV, Faour O, Goff T et al (2011) Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury 42:591–598

    Article  PubMed  Google Scholar 

  14. Henrich D, Seebach C, Sterlepper E et al (2010) RIA reamings and hip aspirate: a comparative evaluation of osteoprogenitor and endothelial progenitor cells. Injury 41:S62–S68

    Article  PubMed  Google Scholar 

  15. Hertel R, Gerber A, Schelgel U et al (1994) Cancellous bone graft for skeletal reconstruction. Muscular versus periosteal bed – preliminary report. Injury 25(Suppl 1):A59–A70

    Article  PubMed  Google Scholar 

  16. Karger C, Kishi T, Schneider L (2012) Treatment of posttraumatic bone defects by the induced membrane technique. Orthop Traumatol Surg Res 98:97–102

    Article  CAS  PubMed  Google Scholar 

  17. Klaue K, Knothe U, Anton C et al (2009) Bone regeneration in long-bone defects: tissue compartmentalisation? In vivo study on bone defects in sheep. Injury 40:S95–S102

    Article  PubMed  Google Scholar 

  18. Kovar FM, Wozasek GE (2011) Bone graft harvesting using the RIA (reaming irrigation aspirator) system – a quantitative assessment. Wien Klin Wochenschr 123:285–290

    Article  CAS  PubMed  Google Scholar 

  19. Krappinger D, Irenberger A, Zegg M et al (2013) Treatment of large posttraumatic tibial bone defects using the Ilizarov method: a subjective outcome assessment. Arch Orthop Trauma Surg 133:789–795

    Article  PubMed  Google Scholar 

  20. Ling XF, Peng X (2012) What is the price to pay for a free fibula flap? A systematic review of donor-site morbidity following free fibula flap surgery. Plast Reconstr Surg 129:657–674

    Article  CAS  PubMed  Google Scholar 

  21. Magadum MP, Basavaraj Yadav CM, Phaneesha MS et al (2006) Acute compression and lengthening by the Ilizarov technique for infected nonunion of the tibia with large bone defects. J Orthop Surg 14:273–279

    CAS  Google Scholar 

  22. Masquelet AC, Fitoussi F, Begue T (2000) Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet 45:346–353

    CAS  PubMed  Google Scholar 

  23. Masquelet AC (2003) Muscle reconstruction in reconstructive surgery: soft tissue repair and long bone reconstruction. Langenbecks Arch Surg 388:344–346

    Article  CAS  PubMed  Google Scholar 

  24. Masquelet AC, Begue T (2010) The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am 41:27–37

    Article  PubMed  Google Scholar 

  25. Paley D, Maar DC (2000) Ilizarov bone transport treatment for tibial defects. J Orthop Trauma 14:76–85

    Article  CAS  PubMed  Google Scholar 

  26. Pelissier P, Bollecker V, Martin D et al (2002) Foot reconstruction with the „bi-Masquelet“ procedure. Ann Chir Plast Esthet 47:304–307

    Article  CAS  PubMed  Google Scholar 

  27. Pelissier PH, Masquelet AC, Bareille R et al (2004) Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res 22:73–79

    Article  CAS  PubMed  Google Scholar 

  28. Pfeifer R, Kobbe P, Knobe M et al (2011) Das Reamer-Irrigator-Aspirator (RIA)-System. Oper Orthop Traumatol 23:446–452

    Article  CAS  PubMed  Google Scholar 

  29. Porter RM, Liu F, Pilapil C (2009) Osteogenic potential of reamer irrigator aspirator (RIA) aspirate collected from patients undergoing hip arthroplasty. J Orthop Res 27:42–49

    Article  PubMed Central  PubMed  Google Scholar 

  30. Qvick LM, Ritter CA, Mutty CE et al (2013) Donor site morbidity with reamer-irrigator-aspirator (RIA) use for autogenous bone graft harvesting in a single centre 204 case series. Injury 44:1263–1269

    Article  PubMed  Google Scholar 

  31. Schmidmaier G, Herrmann S, Green J et al (2006) Quantitative assessment of growth factors in reaming aspirate, iliac crest, and platelet preparation. Bone 39:1156–1163

    Article  CAS  PubMed  Google Scholar 

  32. Stafford PR, Norris BL (2011) Reamer-irrigator-aspirator bone graft and bi Masquelet technique for segmental bone defect nonunions: a review of 25 cases. Injury 41:S72–S77

    Article  Google Scholar 

  33. Taha W (2003) Marknagelung und Fibulatransfer bei segmentalen Knochendefekten an der Tibia. Oper Orthop Traumatol 15:188–207

    Google Scholar 

  34. Taylor BC, French BG, Fowler TT et al (2012) Induced membrane technique for reconstruction to manage bone loss. J Am Acad Orthop Surg 20:142–150

    Article  PubMed  Google Scholar 

  35. Viateau V, Guillemin G, Calando Y et al (2006) Induction of a barrier membrane to facilitate reconstruction of massive segmental diaphyseal bone defects: an ovine model. Vet Surg 35:445–452

    Article  PubMed  Google Scholar 

  36. Villemagne T, Bonnard C, Accadbled F (2011) Intercalary segmental reconstruction of long bones after malignant bone tumor resection using primary methyl methacrylate cement spacer interposition and secondary bone grafting: the induced membrane technique. J Pediatr Orthop 31:570–576

    Article  PubMed  Google Scholar 

  37. Zwetyenga N, Catros S, Emparanza A et al (2009) Mandibular reconstruction using induced membranes with autologous cancellous bone graft and HA-betaTCP: animal model study and preliminary results in patients. Int J Oral Maxillofac Surg 38:1289–1297

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. D. Krappinger, R.A. Lindtner, M. Zegg, A. Dal Pont und B. Huber geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Krappinger MD PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krappinger, D., Lindtner, R., Zegg, M. et al. Die Masquelet-Technik zur Behandlung großer dia- und metaphysärer Knochendefekte. Oper Orthop Traumatol 27, 357–368 (2015). https://doi.org/10.1007/s00064-014-0300-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00064-014-0300-9

Schlüsselwörter

Keywords

Navigation