Advertisement

Moderne Atemgasanalysen

  • L. M. WirtzEmail author
  • S. Kreuer
  • T. Volk
  • T. Hüppe
Innovationen in der Intensivmedizin
  • 249 Downloads

Zusammenfassung

Hintergrund

Die Analyse der Ausatemluft ist eine risikofreie Möglichkeit der bettseitigen Diagnostik. Moderne Analyseverfahren können Substanzen bis hin zum Spurenbereich nachweisen. Dabei stehen die nichtinvasive Diagnostik von Erkrankungen sowie das Drugmonitoring über die Ausatemluft im Fokus aktueller Forschung.

Ziel der Arbeit

Darstellung und Diskussion von intensivmedizinisch relevanten Forschungsergebnissen moderner Atemgasanalyseverfahren.

Material und Methoden

Literaturrecherche mittels PubMed. Suchwörter: „breath analysis“ in Kombination mit „volatile organic compounds“, „critically ill“, „drug monitoring“, „propofol“, „heart failure“, „pneumonia“, „ARDS“, „renal failure“, „liver failure“, „sepsis“ oder „hemorrhage“.

Ergebnisse

Intravenös zugeführtes Propofol kann mittlerweile zuverlässig in der Ausatemluft gemessen werden. Intensivmedizinisch relevante Erkrankungen von Herz, Lunge, Niere und Leber zeigen charakteristische Einflüsse auf die Ausatemluft. Im Tierversuch ergeben sich weitere mögliche Ansätze, um zukünftig Sepsis, Hämorrhagien und eine ventilatorinduzierte Lungenschädigung in der Ausatemluft zu detektieren.

Schlussfolgerung

Moderne Atemgasanalysen könnten zukünftig das nichtinvasive Monitoring von Pharmakotherapien und eine frühzeitige Diagnostik von intensivmedizinisch relevanten Erkrankungen ermöglichen.

Schlüsselwörter

Ausatemluftanalyse Atemgasanalyse Drugmonitoring Intensivmedizin Volatile Biomarker 

Modern breath analysis

Abstract

Background

Analysis of exhaled air is a risk-free option for bedside diagnostics. Modern breath analysis can detect very low concentrations of volatile components. Current research focuses on drug monitoring and diagnosis of various diseases.

Objectives

Presentation and discussion of current breath research relevant to intensive care medicine.

Materials and methods

The literature in PubMed was searched using the following terms: “breath analysis”, “volatile organic compounds”, “critically ill” combined with “drug monitoring”, “propofol”, “heart failure”, “pneumonia”, “ARDS”, “renal failure”, “liver failure”, “sepsis” or “hemorrhage”.

Results

Intravenously administered propofol can now be measured reliably in exhaled air. Functional impairments of the heart, lungs, kidneys and liver show characteristic influences on the exhaled air, which could serve as a new diagnostic tool in the future. Animal experiments already show promising results to detect sepsis, hemorrhage and ventilator-induced lung injury.

Conclusions

In the future, modern breath analysis could enable non-invasive drug monitoring and diagnostics of medical conditions relevant to intensive care medicine.

Keywords

Breath analysis Exhaled air analysis Drug monitoring Intensive care Volatile biomarkers 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

L.M. Wirtz: Reisekostenzuschüsse von B&S Analytik. S. Kreuer: Beratung der Firmen B&S Analytik und B. Braun Melsungen AG. T. Volk: Beratung der Firmen B&S Analytik und B. Braun Melsungen AG. T. Hüppe: Reisekostenzuschüsse von B. Braun Melsungen AG.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Albrecht FW, Hüppe T, Fink T et al (2015) Influence of the respirator on volatile organic compounds: an animal study in rats over 24 h. J Breath Res 9:16007.  https://doi.org/10.1088/1752-7155/9/1/016007 CrossRefGoogle Scholar
  2. 2.
    Arasaradnam RP, McFarlane M, Ling K et al (2016) Breathomics—exhaled volatile organic compound analysis to detect hepatic encephalopathy: a pilot study. J Breath Res 10:16012.  https://doi.org/10.1088/1752-7155/10/1/016012 CrossRefGoogle Scholar
  3. 3.
    Bain MA, Faull R, Fornasini G et al (2006) Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrol Dial Transplant 21:1300–1304.  https://doi.org/10.1093/ndt/gfk056 CrossRefPubMedGoogle Scholar
  4. 4.
    Boots AW, Smolinska A, van Berkel JJBN et al (2014) Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography—mass spectrometry. J Breath Res 8:27106.  https://doi.org/10.1088/1752-7155/8/2/027106 CrossRefGoogle Scholar
  5. 5.
    Bos LDJ, Schultz MJ, Sterk PJ (2014) Exhaled breath profiling for diagnosing acute respiratory distress syndrome. BMC Pulm Med 14:72.  https://doi.org/10.1186/1471-2466-14-72 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bos LDJ, Weda H, Wang Y et al (2014) Exhaled breath metabolomics as a noninvasive diagnostic tool for acute respiratory distress syndrome. Eur Respir J 44:188–197.  https://doi.org/10.1183/09031936.00005614 CrossRefPubMedGoogle Scholar
  7. 7.
    Capodicasa E, Trovarelli G, De Medio GE et al (1999) Volatile alkanes and increased concentrations of isoprene in exhaled air during hemodialysis. Nephron 82:331–337.  https://doi.org/10.1159/000045448 CrossRefPubMedGoogle Scholar
  8. 8.
    Davies S, Spanel P, Smith D (1997) Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int 52:223–228.  https://doi.org/10.1038/ki.1997.324 CrossRefPubMedGoogle Scholar
  9. 9.
    Davies S, Španel P, Smith D (2001) A new ‚online‘ method to measure increased exhaled isoprene in end-stage renal failure. Nephrol Dial Transplant 16:836–839.  https://doi.org/10.1093/ndt/16.4.836 CrossRefPubMedGoogle Scholar
  10. 10.
    Endre ZH, Pickering JW, Storer MK et al (2011) Breath ammonia and trimethylamine allow real-time monitoring of haemodialysis efficacy. Physiol Meas 32:115–130.  https://doi.org/10.1088/0967-3334/32/1/008 CrossRefPubMedGoogle Scholar
  11. 11.
    Eng K, Alkhouri N, Cikach F et al (2015) Analysis of breath volatile organic compounds in children with chronic liver disease compared to healthy controls. J Breath Res 9:26002.  https://doi.org/10.1088/1752-7155/9/2/026002 CrossRefGoogle Scholar
  12. 12.
    Fink T, Wolf A, Maurer F et al (2015) Volatile organic compounds during inflammation and sepsis in rats: a potential breath test using ion-mobility spectrometry. Anesthesiology 122:117–126.  https://doi.org/10.1097/ALN.0000000000000420 CrossRefPubMedGoogle Scholar
  13. 13.
    Gao J, Zou Y, Wang Y et al (2016) Breath analysis for noninvasively differentiating acinetobacter baumannii ventilator-associated pneumonia from its respiratory tract colonization of ventilated patients. J Breath Res.  https://doi.org/10.1088/1752-7155/10/2/027102 CrossRefPubMedGoogle Scholar
  14. 14.
    Guamán AV, Carreras A, Calvo D et al (2012) Rapid detection of sepsis in rats through volatile organic compounds in breath. J Chromatogr B Analyt Technol Biomed Life Sci 881–882:76–82.  https://doi.org/10.1016/j.jchromb.2011.12.001 CrossRefPubMedGoogle Scholar
  15. 15.
    Guay J, Ochroch EA (2015) Intraoperative use of low volume ventilation to decrease postoperative mortality, mechanical ventilation, lengths of stay and lung injury in patients without acute lung injury. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD011151.pub2 CrossRefPubMedGoogle Scholar
  16. 16.
    Hüppe T, Klasen R, Maurer F et al (2018) Volatile organic compounds in patients with acute kidney injury and changes during dialysis. Crit Care Med.  https://doi.org/10.1097/CCM.0000000000003523 CrossRefGoogle Scholar
  17. 17.
    Hüppe T, Lorenz D, Maurer F et al (2016) Exhalation of volatile organic compounds during hemorrhagic shock and reperfusion in rats: an exploratory trial. J Breath Res 10:16016.  https://doi.org/10.1088/1752-7155/10/1/016016 CrossRefGoogle Scholar
  18. 18.
    Hüppe T, Lorenz D, Wachowiak M et al (2017) Volatile organic compounds in ventilated critical care patients: a systematic evaluation of cofactors. BMC Pulm Med 17:1–15.  https://doi.org/10.1186/s12890-017-0460-0 CrossRefGoogle Scholar
  19. 19.
    Kazui M, Andreoni KA, Norris EJ et al (1992) Breath ethane: a specific indicator of free-radical-mediated lipid peroxidation following reperfusion of the ischemic liver. Free Radic Biol Med 13:509–515.  https://doi.org/10.1016/0891-5849(92)90145-7 CrossRefPubMedGoogle Scholar
  20. 20.
    Kiefer D, Wirtz LM, Maurer F et al (2018) Exhaled pentanal: a biomarker for ventilator induced lung injury in rats. Annu. Meet. Am. Soc. Anesthesiol. (Abstract Nr. A4257)Google Scholar
  21. 21.
    Kreuer S, Hüppe T, Kiefer D et al (2018) First clinical validation of the exhaled drug monitor: Edmon designed for real time measurement of exhaled propofol. Annu. Meet. Am. Soc. Anesthesiol.. (Abstract Nr. A1050)Google Scholar
  22. 22.
    Kupari M, Lommi J, Ventilä M, Karjalainen U (1995) Breath acetone in congestive heart failure. Am J Cardiol 76:1076–1078.  https://doi.org/10.1016/S0002-9149(99)80304-X CrossRefPubMedGoogle Scholar
  23. 23.
    Lorenz D, Maurer F, Trautner K et al (2017) Adhesion of volatile propofol to breathing circuit tubing. J Breath Res 11:36005.  https://doi.org/10.1088/1752-7163/aa795d CrossRefGoogle Scholar
  24. 24.
    Marcondes-Braga FG, Batista GL, Gutz IGR et al (2016) Impact of exhaled breath acetone in the prognosis of patients with Heart Failure with reduced Ejection Fraction (HFrEF). One year of clinical follow-up. PLoS ONE 11:e168790.  https://doi.org/10.1371/journal.pone.0168790 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Marcondes-Braga FG, Gutz IGR, Batista GL et al (2012) Exhaled acetone as a new biomarker of heart failure severity. Chest 142:457–466.  https://doi.org/10.1378/chest.11-2892 CrossRefPubMedGoogle Scholar
  26. 26.
    Maurer F, Lorenz DJ, Pielsticker G et al (2017) Adherence of volatile propofol to various types of plastic tubing. J Breath Res.  https://doi.org/10.1088/1752-7163/aa567e CrossRefPubMedGoogle Scholar
  27. 27.
    Narasimhan LR, Goodman W, Patel CKN (2001) Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis. Proc Natl Acad Sci USA 98:4617–4621.  https://doi.org/10.1073/pnas.071057598 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Nosseir N, Michels G, Pfister R et al (2014) Therapeutisches Drug Monitoring (TDM) von Antiinfektiva in der Intensivmedizin. Dtsch Med Wochenschr 139:1889–1894.  https://doi.org/10.1055/s-0034-1387215 CrossRefPubMedGoogle Scholar
  29. 29.
    O’Hara ME, Fernández del Río R, Holt A et al (2016) Limonene in exhaled breath is elevated in hepatic encephalopathy. J Breath Res 10:46010.  https://doi.org/10.1088/1752-7155/10/4/046010 CrossRefGoogle Scholar
  30. 30.
    Pagonas N, Vautz W, Seifert L et al (2012) Volatile organic compounds in uremia. PLoS ONE 7:e46258.  https://doi.org/10.1371/journal.pone.0046258 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Samara MA, Tang WHW, Cikach F et al (2013) Single exhaled breath metabolomic analysis identifies unique breathprint in patients with acute decompensated heart failure. J Am Coll Cardiol 61:1463–1464.  https://doi.org/10.1016/j.jacc.2012.12.033 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Schnabel R, Fijten R, Smolinska A et al (2015) Analysis of volatile organic compounds in exhaled breath to diagnose ventilator-associated pneumonia. Sci Rep 5:17179.  https://doi.org/10.1038/srep17179 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Schubert JK, Miekisch W, Birken T et al (2005) Impact of inspired substance concentrations on the results of breath analysis in mechanically ventilated patients. Biomarkers 10:138–152.  https://doi.org/10.1080/13547500500050259 CrossRefPubMedGoogle Scholar
  34. 34.
    Schubert JK, Miekisch W, Geiger K, Nöldge-Schomburg GF (2004) Breath analysis in critically ill patients: potential and limitations. Expert Rev Mol Diagn 4:619–629.  https://doi.org/10.1586/14737159.4.5.619 CrossRefPubMedGoogle Scholar
  35. 35.
    Schwenger V, Kindgen-Milles D, Willam C et al (2018) Extrakorporale Nierenersatztherapie bei akuter Nierenschädigung. Med Klin Intensivmed Notfmed 113:370–376.  https://doi.org/10.1007/s00063-018-0418-x CrossRefPubMedGoogle Scholar
  36. 36.
    Sehnert SS, Jiang L, Burdick JF, Risby TH (2002) Breath biomarkers for detection of human liver diseases: preliminary study. Biomarkers 7:174–187.  https://doi.org/10.1080/135475001101 CrossRefPubMedGoogle Scholar
  37. 37.
    Trefz P, Kamysek S, Fuchs P et al (2017) Drug detection in breath: non-invasive assessment of illicit or pharmaceutical drugs. J Breath Res 11:24001.  https://doi.org/10.1088/1752-7163/aa61bf CrossRefGoogle Scholar
  38. 38.
    Wirtz LM, Kiefer D, Maurer F et al (2018) Harmful and protective ventilation can be differentiated by exhaled pentanal in rats. Annu. Meet. Am. Soc. Anesthesiol.. (Abstract Nr. A3004)Google Scholar
  39. 39.
    Wlodzimirow KA, Abu-Hanna A, Schultz MJ et al (2014) Exhaled breath analysis with electronic nose technology for detection of acute liver failure in rats. Biosens Bioelectron 53:129–134.  https://doi.org/10.1016/j.bios.2013.09.047 CrossRefPubMedGoogle Scholar
  40. 40.
    Wolf A, Baumbach JI, Kleber A et al (2014) Multi-capillary column-ion mobility spectrometer (MCC-IMS) breath analysis in ventilated rats: a model with the feasibility of long-term measurements. J Breath Res 8:16006.  https://doi.org/10.1088/1752-7155/8/1/016006 CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Center of Breath Research (CBR); Klinik für Anästhesiologie, Intensivmedizin und SchmerztherapieUniversitätsklinikum des SaarlandesHomburg (Saar)Deutschland

Personalised recommendations