Advertisement

Prophylaktische Anwendung von Tranexamsäure in der nichtkardialen Chirurgie

Update 2017
  • J. WaskowskiEmail author
  • J. C. Schefold
  • F. Stueber
Übersichten

Zusammenfassung

Hintergrund

Die Vermeidung perioperativer Blutungen ist ein zentrales Ziel des „patient blood management“. Ein entsprechender Baustein ist die Hemmung der Fibrinolyse mittels Proteaseinhibitoren, z. B. der Tranexamsäure (TXA). TXA hemmt die Plasminogenaktivierung und somit den Abbau von Fibrin.

Ziele der Arbeit

Der vorliegende Beitrag gibt einen Überblick über die vorhandene Literatur und sich hieraus ergebende Einsatzbereiche von TXA in der Prophylaxe perioperativer Blutungen.

Methoden

Literaturrecherche in PubMed/MEDLINE (U.S. National Library of Medicine®, Bethesda, MD, USA).

Ergebnisse

Randomisierte kontrollierte Studien (RCT) sowie Metaanalysen zeigen, dass TXA den perioperativen Blutverlust und Transfusionsbedarf im Bereich der Hüft- und Knieendoprothetik senkt. Dies gilt für die intravenöse und topische Anwendung. Auch für den Einsatz in der Wirbelsäulenchirurgie und der rekonstruktiven Chirurgie (kindliche Kraniosynostosen) existiert gute Evidenz. Einzelne RCT zeigen einen Nutzen von TXA für abdominale Hysterektomien, die offene Prostatachirurgie, die Tumorchirurgie der Leber und blutende Traumapatienten. Zur Prophylaxe von peripartalen Hämorrhagien (PPH) bei vaginaler Geburt oder Kaiserschnitt wird TXA derzeit nicht generell empfohlen – es existieren jedoch Hinweise auf einen potenziellen Nutzen. Bei aktiver PPH wird der Einsatz empfohlen. Zur prophylaktischen perioperativen Gabe wird für Erwachsene eine Bolusgabe von 1 g bzw. 10–15 mg/kg KG i. v. empfohlen, ggf. wiederholt (nach 6 h) oder ergänzt durch eine Infusion über 8 h. Perioperative Lungenembolien oder tiefe Beinvenenthrombosen treten nach derzeitiger Datenlage nicht gehäuft auf.

Schlussfolgerung

Die prophylaktische Anwendung der TXA unter Beachtung der Kontraindikationen senkt für ausgewählte chirurgische Indikationen den perioperativen Blutverlust sowie den Transfusionsbedarf.

Schlüsselwörter

Blutung Tranexamsäure Perioperative Medizin Kritische Erkrankung „Patient blood management“ 

Prophylactic use of tranexamic acid in noncardiac surgery

Update 2017

Abstract

Background

Minimising perioperative bleeding is a key goal of “patient blood management” programs. One component of respective strategies includes preventive inhibition of fibrinolysis using protease inhibitors, such as tranexamic acid (TXA). TXA inhibits plasminogen activation and plasmin-induced fibrin degradation.

Objectives

The present article provides an overview of the existing literature and TXA applications in the prophylaxis of perioperative bleeding.

Methods

Literature search in PubMed/MEDLINE (U.S. National Library of Medicine®, Bethesda, MD, USA).

Results

TXA reduces perioperative blood loss and transfusion requirements in several randomized controlled trials (RCTs) and meta-analyses in the field of hip and knee arthroplasty for both intravenous and topical use. Moreover, evidence favours use of TXA in complex spine surgery and reconstructive surgery (e. g. craniosynostosis in children). Single RCTs showed benefits of TXA in abdominal hysterectomy, open prostatectomy, liver surgery and actively bleeding trauma patients. For prophylaxis of peripartum haemorrhage (PPH) following vaginal delivery or Caesarean section, TXA cannot be routinely recommended, although evidence points to benefits in actively bleeding patients. A recommendation exists for the treatment of (active) PPH. For prophylactic perioperative administration, different dosage regimens exist for adults. Most often an initial i. v. bolus of 1 g or 10–15 mg/kg body weight with/without repetition after 6 h or continuous infusions over 8 h is administered. Increased rates of thromboembolic events were not noted.

Conclusion

Protease inhibitors such as TXA reduce perioperative blood loss and transfusion requirements in selected surgical fields.

Keywords

Bleeding Tranexamic acid Perioperative medicine Critical illness Patient blood management 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Waskowski, J. C. Schefold und F. Stueber geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Alam A, Choi S (2015) Prophylactic use of tranexamic acid for postpartum bleeding outcomes: a systematic review and meta-analysis of randomized controlled trials. Transfus Med Rev 29:231–241PubMedGoogle Scholar
  2. 2.
    Alshryda S, Mason J, Vaghela M et al (2013) Topical (intra-articular) tranexamic acid reduces blood loss and transfusion rates following total knee replacement: a randomized controlled trial (TRANX-K). J Bone Joint Surg Am 95:1961–1968PubMedGoogle Scholar
  3. 3.
    Baharoglu MI, Germans MR, Rinkel GJ et al (2013) Antifibrinolytic therapy for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd001245.pub2 CrossRefPubMedGoogle Scholar
  4. 4.
    Brum MR, Miura MS, Castro SF et al (2012) Tranexamic acid in adenotonsillectomy in children: a double-blind randomized clinical trial. Int J Pediatr Otorhinolaryngol 76:1401–1405PubMedGoogle Scholar
  5. 5.
    Buerke M, Pruefer D, Sankat D et al (2007) Effects of aprotinin on gene expression and protein synthesis after ischemia and reperfusion in rats. Circulation 116:I-121–I-126Google Scholar
  6. 6.
    Burns PB, Rohrich RJ, Chung KC (2011) The levels of evidence and their role in evidence-based medicine. Plast Reconstr Surg 128:305–310PubMedPubMedCentralGoogle Scholar
  7. 7.
    Carter J, Buerke U, Rossner E et al (2008) Anti-inflammatory actions of aprotinin provide dose-dependent cardioprotection from reperfusion injury. Br J Pharmacol 155:93–102PubMedPubMedCentralGoogle Scholar
  8. 8.
    Chan CC, Chan YY, Tanweer F (2013) Systematic review and meta-analysis of the use of tranexamic acid in tonsillectomy. Eur Arch Otorhinolaryngol 270:735–748PubMedGoogle Scholar
  9. 9.
    Chen S, Wu K, Kong G et al (2016) The efficacy of topical tranexamic acid in total hip arthroplasty: a meta-analysis. BMC Musculoskelet Disord 17:81PubMedPubMedCentralGoogle Scholar
  10. 10.
    Cheriyan T, Maier SP 2nd, Bianco K et al (2015) Efficacy of tranexamic acid on surgical bleeding in spine surgery: a meta-analysis. Spine J 15:752–761PubMedGoogle Scholar
  11. 11.
    CRASH-2 Trial Collaborators (2010) Effects of TXA on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 376:23–32Google Scholar
  12. 12.
    WOMAN Trial Collaborators (2017) Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial. Lancet 389:2105–2116Google Scholar
  13. 13.
    Crash-2 Collaborators IBS (2011) Effect of tranexamic acid in traumatic brain injury: a nested randomised, placebo controlled trial (CRASH-2 intracranial bleeding study). BMJ 343:d3795Google Scholar
  14. 14.
    Crescenti A, Borghi G, Bignami E et al (2011) Intraoperative use of tranexamic acid to reduce transfusion rate in patients undergoing radical retropubic prostatectomy: double blind, randomised, placebo controlled trial. BMJ 343:d5701PubMedPubMedCentralGoogle Scholar
  15. 15.
    Dewan Y, Komolafe EO, Mejia-Mantilla JH et al (2012) CRASH-3 – tranexamic acid for the treatment of significant traumatic brain injury: study protocol for an international randomized, double-blind, placebo-controlled trial. Trials 13:87PubMedPubMedCentralGoogle Scholar
  16. 16.
    Donohue CI, Mallett SV (2015) Reducing transfusion requirements in liver transplantation. World J Transplant 5:165–182PubMedPubMedCentralGoogle Scholar
  17. 17.
    Du-Thanh A, Raison-Peyron N, Drouet C et al (2010) Efficacy of tranexamic acid in sporadic idiopathic bradykinin angioedema. Allergy 65:793–795PubMedGoogle Scholar
  18. 18.
    Ducloy-Bouthors AS, Jude B, Duhamel A et al (2011) High-dose tranexamic acid reduces blood loss in postpartum haemorrhage. Crit Care 15:R117PubMedPubMedCentralGoogle Scholar
  19. 19.
    Dunn CJ, Goa KL (1999) Tranexamic acid: a review of its use in surgery and other indications. Drugs 57:1005–1032PubMedGoogle Scholar
  20. 20.
    Duran De La Fuente Perez-Lope P, Garcia-Fernandez J, Perez-Lopez C et al (2003) Usefulness of tranexamic acid in cranial remodeling surgery. Rev Esp Anestesiol Reanim 50:388–394Google Scholar
  21. 21.
    Engel M, Bodem JP, Busch CJ et al (2015) The value of tranexamic acid during fronto-orbital advancement in isolated metopic craniosynostosis. J Craniomaxillofac Surg 43:1239–1243PubMedGoogle Scholar
  22. 22.
    Frimat M, Decambron M, Lebas C et al (2016) Renal cortical necrosis in postpartum hemorrhage: a case series. Am J Kidney Dis 68:50–57PubMedGoogle Scholar
  23. 23.
    Germans MR, Post R, Coert BA et al (2013) Ultra-early tranexamic acid after subarachnoid hemorrhage (ULTRA): study protocol for a randomized controlled trial. Trials 14:143PubMedPubMedCentralGoogle Scholar
  24. 24.
    Gomez-Barrena E, Ortega-Andreu M, Padilla-Eguiluz NG et al (2014) Topical intra-articular compared with intravenous tranexamic acid to reduce blood loss in primary total knee replacement: a double-blind, randomized, controlled, noninferiority clinical trial. J Bone Joint Surg Am 96:1937–1944PubMedGoogle Scholar
  25. 25.
    Goobie SM, Cladis FP, Glover CD et al (2017) Safety of antifibrinolytics in cranial vault reconstructive surgery: a report from the pediatric craniofacial collaborative group. Paediatr Anaesth 27:271–281PubMedGoogle Scholar
  26. 26.
    Goobie SM, Meier PM, Pereira LM et al (2011) Efficacy of tranexamic acid in pediatric craniosynostosis surgery: a double-blind, placebo-controlled trial. Anesthesiology 114:862–871PubMedGoogle Scholar
  27. 27.
    Gurusamy KS, Pissanou T, Pikhart H et al (2011) Methods to decrease blood loss and transfusion requirements for liver transplantation. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd009052.pub2 CrossRefPubMedGoogle Scholar
  28. 28.
    Hansen JK, Lydick AM, Wyatt MM et al (2017) Reducing postoperative bleeding after craniosynostosis repair utilizing a low-dose transexamic acid infusion protocol. J Craniofac Surg 28:1255–1259PubMedGoogle Scholar
  29. 29.
    Heesen M, Bohmer J, Klohr S et al (2014) Prophylactic tranexamic acid in parturients at low risk for post-partum haemorrhage: systematic review and meta-analysis. Acta Anaesthesiol Scand 58:1075–1085PubMedGoogle Scholar
  30. 30.
    Imbesi S, Nettis E, Minciullo PL et al (2010) Hypersensitivity to tranexamic acid: a wide spectrum of adverse reactions. Pharm World Sci 32:416–419PubMedGoogle Scholar
  31. 31.
    Iorio-Morin C, Blanchard J, Richer M et al (2016) Tranexamic acid in chronic subdural hematomas (TRACS): study protocol for a randomized controlled trial. Trials 17:235PubMedPubMedCentralGoogle Scholar
  32. 32.
    Jimenez JJ, Iribarren JL, Lorente L et al (2007) Tranexamic acid attenuates inflammatory response in cardiopulmonary bypass surgery through blockade of fibrinolysis. Crit Care.  https://doi.org/10.1186/cc6173 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kageyama H, Toyooka T, Tsuzuki N et al (2013) Nonsurgical treatment of chronic subdural hematoma with tranexamic acid. J Neurosurg 119:332–337PubMedGoogle Scholar
  34. 34.
    Ker K, Edwards P, Perel P et al (2012) Effect of tranexamic acid on surgical bleeding: systematic review and cumulative meta-analysis. BMJ 344:e3054PubMedPubMedCentralGoogle Scholar
  35. 35.
    Ker K, Shakur H, Roberts I (2016) Does tranexamic acid prevent postpartum haemorrhage? A systematic review of randomised controlled trials. BJOG 123:1745–1752PubMedGoogle Scholar
  36. 36.
    Kim C, Park SS, Davey JR (2015) Tranexamic acid for the prevention and management of orthopedic surgical hemorrhage: current evidence. J Blood Med 6:239–244PubMedPubMedCentralGoogle Scholar
  37. 37.
    Kratzer S, Irl H, Mattusch C et al (2014) Tranexamic acid impairs gamma-aminobutyric acid receptor type A‑mediated synaptic transmission in the murine amygdala: a potential mechanism for drug-induced seizures? Anesthesiology 120:639–649PubMedGoogle Scholar
  38. 38.
    Kumsar S, Dirim A, Toksoz S et al (2011) Tranexamic acid decreases blood loss during transurethral resection of the prostate (TUR-P). Cent European J Urol 64:156–158PubMedPubMedCentralGoogle Scholar
  39. 39.
    Kurnik NM, Pflibsen LR, Bristol RE et al (2017) Tranexamic acid reduces blood loss in craniosynostosis surgery. J Craniofac Surg 28:1325–1329PubMedGoogle Scholar
  40. 40.
    Lecker I, Wang DS, Kaneshwaran K et al (2017) High concentrations of tranexamic acid inhibit ionotropic glutamate receptors. Anesthesiology 127:89–97PubMedGoogle Scholar
  41. 41.
    Lecker I, Wang DS, Whissell PD et al (2016) Tranexamic acid-associated seizures: causes and treatment. Ann Neurol 79:18–26PubMedGoogle Scholar
  42. 42.
    Li C, Gong Y, Dong L et al (2017) Is prophylactic tranexamic acid administration effective and safe for postpartum hemorrhage prevention? A systematic review and meta-analysis. Medicine (Baltimore) 96:e5653PubMedPubMedCentralGoogle Scholar
  43. 43.
    Liu X, Liu J, Sun G (2017) A comparison of combined intravenous and topical administration of tranexamic acid with intravenous tranexamic acid alone for blood loss reduction after total hip arthroplasty: a meta-analysis. Int J Surg 41:34–43PubMedGoogle Scholar
  44. 44.
    Lundin ES, Johansson T, Zachrisson H et al (2014) Single-dose tranexamic acid in advanced ovarian cancer surgery reduces blood loss and transfusions: double-blind placebo-controlled randomized multicenter study. Acta Obstet Gynecol Scand 93:335–344PubMedGoogle Scholar
  45. 45.
    Mangano DT, Miao Y, Vuylsteke A et al (2007) Mortality associated with aprotinin during 5 years following coronary artery bypass graft surgery. JAMA 297:471–479PubMedGoogle Scholar
  46. 46.
    Mangano DT, Tudor IC, Dietzel C et al (2006) The risk associated with aprotinin in cardiac surgery. N Engl J Med 354:353–365PubMedGoogle Scholar
  47. 47.
    McCormack PL (2012) Tranexamic acid: a review of its use in the treatment of hyperfibrinolysis. Drugs 72:585–617PubMedGoogle Scholar
  48. 48.
    Mebel D, Akagami R, Flexman AM (2016) Use of tranexamic acid is associated with reduced blood product transfusion in complex skull base neurosurgical procedures: a retrospective cohort study. Anesth Analg 122:503–508PubMedGoogle Scholar
  49. 49.
    Mehrabadi A, Hutcheon JA, Lee L et al (2012) Trends in postpartum hemorrhage from 2000 to 2009: a population-based study. BMC Pregnancy Childbirth 12:108PubMedPubMedCentralGoogle Scholar
  50. 50.
    Molenaar IQ, Warnaar N, Groen H et al (2007) Efficacy and safety of antifibrinolytic drugs in liver transplantation: a systematic review and meta-analysis. Am J Transplant 7:185–194PubMedGoogle Scholar
  51. 51.
    Moskal JT, Capps SG (2016) Meta-analysis of intravenous tranexamic acid in primary total hip arthroplasty. Orthopedics 39:e883–e892PubMedGoogle Scholar
  52. 52.
    Nilsson IM (1980) Clinical pharmacology of aminocaproic and tranexamic acids. J Clin Pathol Suppl (R Coll Pathol) 14:41–47Google Scholar
  53. 53.
    Nishihara S, Hamada M (2015) Does tranexamic acid alter the risk of thromboembolism after total hip arthroplasty in the absence of routine chemical thromboprophylaxis? Bone Joint J 97-B:458–462PubMedGoogle Scholar
  54. 54.
    Novikova N, Hofmeyr GJ, Cluver C (2015) Tranexamic acid for preventing postpartum haemorrhage. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd007872.pub3 CrossRefPubMedGoogle Scholar
  55. 55.
    O’Brien JG, Battistini B, Zaharia F et al (2000) Effects of tranexamic acid and aprotinin, two antifibrinolytic drugs, on PAF-induced plasma extravasation in unanesthetized rats. Inflammation 24:411–429PubMedGoogle Scholar
  56. 56.
    Odabas AR, Cetinkaya R, Selcuk Y et al (2001) Tranexamic-acid-induced acute renal cortical necrosis in a patient with haemophilia A. Nephrol Dial Transplant 16:189–190PubMedGoogle Scholar
  57. 57.
    Okamoto S, Sato S, Takada Y et al (1964) An active stereo-isomer (trans-form) of AMCHA and its antifibrinolytic (antiplasmic) action in vitro and in vivo. Keio J Med 13:177–185PubMedGoogle Scholar
  58. 58.
    Ononge S, Mirembe F, Wandabwa J et al (2016) Incidence and risk factors for postpartum hemorrhage in Uganda. Reprod Health 13:38PubMedPubMedCentralGoogle Scholar
  59. 59.
    Patel JN, Spanyer JM, Smith LS et al (2014) Comparison of intravenous versus topical tranexamic acid in total knee arthroplasty: a prospective randomized study. J Arthroplasty 29:1528–1531PubMedGoogle Scholar
  60. 60.
    Peng Zhang MM, Jifeng LMM, Xiao Wang MM (2017) Combined versus single application of tranexamic acid in total knee and hip arthroplasty: a meta-analysis of randomized controlled trials. Int J Surg 43:171–180PubMedGoogle Scholar
  61. 61.
    Poeran J, Rasul R, Suzuki S et al (2014) Tranexamic acid use and postoperative outcomes in patients undergoing total hip or knee arthroplasty in the United States: retrospective analysis of effectiveness and safety. BMJ 349:g4829PubMedPubMedCentralGoogle Scholar
  62. 62.
    Pourfakhr P, Gatavi E, Gooran S et al (2016) Local administration of tranexamic acid during prostatectomy surgery: effects on reducing the amount of bleeding. Nephrourol Mon 8:e40409PubMedPubMedCentralGoogle Scholar
  63. 63.
    Rannikko A, Petas A, Taari K (2004) Tranexamic acid in control of primary hemorrhage during transurethral prostatectomy. Urology 64:955–958PubMedGoogle Scholar
  64. 64.
    Reust DL, Reeves ST, Abernathy JH 3rd et al (2010) Temporally and regionally disparate differences in plasmin activity by tranexamic acid. Anesth Analg 110:694–701PubMedPubMedCentralGoogle Scholar
  65. 65.
    Schlembach D, Mortl MG, Girard T et al (2014) Management of postpartum hemorrhage (PPH): algorithm of the interdisciplinary D‑A-CH consensus group PPH (Germany – Austria – Switzerland). Anaesthesist 63:234–242PubMedGoogle Scholar
  66. 66.
    Sentilhes L, Daniel V, Darsonval A et al (2015) Study protocol. TRAAP – TRAnexamic Acid for Preventing postpartum hemorrhage after vaginal delivery: a multicenter randomized, double-blind, placebo-controlled trial. BMC Pregnancy Childbirth 15:135PubMedPubMedCentralGoogle Scholar
  67. 67.
    Sentilhes L, Lasocki S, Ducloy-Bouthors AS et al (2015) Tranexamic acid for the prevention and treatment of postpartum haemorrhage. Br J Anaesth 114:576–587PubMedGoogle Scholar
  68. 68.
    Sheldon WR, Blum J, Vogel JP et al (2014) Postpartum haemorrhage management, risks, and maternal outcomes: findings from the World Health Organization multicountry survey on maternal and newborn health. BJOG 121(Suppl 1):5–13PubMedGoogle Scholar
  69. 69.
    Simonazzi G, Bisulli M, Saccone G et al (2016) Tranexamic acid for preventing postpartum blood loss after cesarean delivery: a systematic review and meta-analysis of randomized controlled trials. Acta Obstet Gynecol Scand 95:28–37PubMedGoogle Scholar
  70. 70.
    Sun CX, Zhang L, Mi LD et al (2017) Efficiency and safety of tranexamic acid in reducing blood loss in total shoulder arthroplasty: a systematic review and meta-analysis. Medicine (Baltimore) 96:e7015Google Scholar
  71. 71.
    Sun X, Dong Q, Zhang YG (2016) Intravenous versus topical tranexamic acid in primary total hip replacement: a systemic review and meta-analysis. Int J Surg 32:10–18PubMedGoogle Scholar
  72. 72.
    Tian P, Liu WB, Li ZJ et al (2017) The efficacy and safety of tranexamic acid in revision total knee arthroplasty: a meta-analysis. BMC Musculoskelet Disord 18:273PubMedPubMedCentralGoogle Scholar
  73. 73.
    Topsoee MF, Bergholt T, Ravn P et al (2016) Anti-hemorrhagic effect of prophylactic tranexamic acid in benign hysterectomy-a double-blinded randomized placebo-controlled trial. Am J Obstet Gynecol 215(72):e71–e78Google Scholar
  74. 74.
    Van Aelbrouck C, Jorquera-Vasquez S, Beukinga I et al (2016) Tranexamic acid decreases the magnitude of platelet dysfunction in aspirin-free patients undergoing cardiac surgery with cardiopulmonary bypass: a pilot study. Blood Coagul Fibrinolysis 27:855–861PubMedGoogle Scholar
  75. 75.
    Von Schmidt Auf Altenstadt JF, Hukkelhoven CW, Van Roosmalen J et al (2013) Pre-eclampsia increases the risk of postpartum haemorrhage: a nationwide cohort study in the Netherlands. PLoS ONE 8:e81959Google Scholar
  76. 76.
    Wafaisade A, Lefering R, Bouillon B et al (2016) Prehospital administration of tranexamic acid in trauma patients. Crit Care 20:143PubMedPubMedCentralGoogle Scholar
  77. 77.
    Wang C, Kang P, Ma J et al (2016) Single-dose tranexamic acid for reducing bleeding and transfusions in total hip arthroplasty: a double-blind, randomized controlled trial of different doses. Thromb Res 141:119–123PubMedGoogle Scholar
  78. 78.
    Wang D, Wang L, Wang Y et al (2017) The efficiency and safety of tranexamic acid for reducing blood loss in open myomectomy: a meta-analysis of randomized controlled trials. Medicine (Baltimore) 96:e7072Google Scholar
  79. 79.
    Wang H, Shen B, Zeng Y (2014) Comparison of topical versus intravenous tranexamic acid in primary total knee arthroplasty: a meta-analysis of randomized controlled and prospective cohort trials. Knee 21:987–993PubMedGoogle Scholar
  80. 80.
    Wong J, Abrishami A, El Beheiry H et al (2010) Topical application of tranexamic acid reduces postoperative blood loss in total knee arthroplasty: a randomized, controlled trial. J Bone Joint Surg Am 92:2503–2513PubMedGoogle Scholar
  81. 81.
    Wu CC, Ho WM, Cheng SB et al (2006) Perioperative parenteral tranexamic acid in liver tumor resection: a prospective randomized trial toward a “blood transfusion”-free hepatectomy. Ann Surg 243:173–180PubMedPubMedCentralGoogle Scholar
  82. 82.
    Wu Y, Yang T, Zeng Y et al (2017) Tranexamic acid reduces blood loss and transfusion requirements in primary simultaneous bilateral total knee arthroplasty: a meta-analysis of randomized controlled trials. Blood Coagul Fibrinolysis 28(2017):501–508PubMedGoogle Scholar
  83. 83.
    Xie J, Ma J, Kang P et al (2015) Does tranexamic acid alter the risk of thromboembolism following primary total knee arthroplasty with sequential earlier anticoagulation? A large, single center, prospective cohort study of consecutive cases. Thromb Res 136:234–238PubMedGoogle Scholar
  84. 84.
    Yang ZG, Chen WP, Wu LD (2012) Effectiveness and safety of tranexamic acid in reducing blood loss in total knee arthroplasty: a meta-analysis. J Bone Joint Surg Am 94:1153–1159PubMedGoogle Scholar
  85. 85.
    Yuan QM, Zhao ZH, Xu BS (2017) Efficacy and safety of tranexamic acid in reducing blood loss in scoliosis surgery: a systematic review and meta-analysis. Eur Spine J 26:131–139PubMedGoogle Scholar
  86. 86.
    Zaid HB, Yang DY, Tollefson MK et al (2016) Efficacy and safety of intraoperative tranexamic acid infusion for reducing blood transfusion during open radical cystectomy. Urology 92:57–62PubMedGoogle Scholar
  87. 87.
    Zhang H, He G, Zhang C et al (2017) Is combined topical and intravenous tranexamic acid superior to intravenous tranexamic acid alone for controlling blood loss after total hip arthroplasty? A meta-analysis. Medicine (Baltimore) 96:e6916Google Scholar
  88. 88.
    Zhang P, He J, Fang Y et al (2017) Efficacy and safety of intravenous tranexamic acid administration in patients undergoing hip fracture surgery for hemostasis: a meta-analysis. Medicine (Baltimore) 96:e6940Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Universitätsklinik für Anästhesiologie und Schmerztherapie, Inselspital, Universitätsspital BernUniversität BernBernSchweiz
  2. 2.Universitätsklinik für Intensivmedizin, Inselspital, Universitätsspital BernUniversität BernBernSchweiz

Personalised recommendations