Advertisement

Adipositas (permagna) – Besonderheiten bei der invasiven und nichtinvasiven Beatmung

  • M. DeppeEmail author
  • P. Lebiedz
Übersichten
  • 550 Downloads

Zusammenfassung

Die Adipositas spielt eine zunehmende Rolle in der globalen Bevölkerung und ist somit auch vermehrt als Komorbidität auf der Intensivstation zu finden. Das Regime in der Beatmung adipöser Patienten muss jedoch den veränderten pathophysiologischen Bedingungen Rechnung tragen. Leider fehlen bisweilen noch größere prospektiv-randomisierte Multizenterstudien zu diesem Thema, sodass aktuelle Regime meist auf dem Erfahrungsschatz von Intensivmedizinern und einzelnen Single-center-Studien beruhen. Primär sollte versucht werden, nach Möglichkeit eine Intubation durch frühzeitige Hinzunahme einer nicht-invasiven Beatmung (NIV) zu vermeiden. Diese sollte speziell beim Obesitas-Hypoventilationssyndrom (OHS) und hyperkapnischer akuter respiratorischer Insuffizienz frühzeitig zum Einsatz kommen. Von großer Bedeutung ist von Beginn an die Oberkörperhochlagerung (>45°), die die Lungencompliance und die funktionelle Residualkapazität v. a. bei Patienten mit schwerer respiratorischer Insuffizienz verbessert. Der optimale positiv-endexspiratorische Druck (PEEP) ist bei der invasiven Beatmung wesentlich und kann mittels transpulmonaler Druckmessung oder annähernd unter Zuhilfenahme der ARDS(Acute Respiratory Distress Syndrome)-Network-Tabellen abgeschätzt werden. Die Einstellung des Tidalvolumen (Vt) sollte anhand des Idealgewichts und nicht des aktuellen Gewichts des Patienten erfolgen (Vt = 6 ml/kgKG), da sonst Lungenschäden und eine (zusätzliche) Rechtsherzbelastung drohen. Unter Umständen können vorübergehend auch Inspirationsdrücke >30 cmH2O toleriert werden. Die frühzeitige Tracheotomie mit der Möglichkeit der Beendigung bzw. Reduktion von Analgosedierung und Relaxierung wird in der Literatur kontrovers diskutiert und verbleibt aktuell eine Einzelfallentscheidung. Beim therapierefraktären Lungenversagen ist die Anwendung einer venovenösen extrakorporalen Membranoxygenierung (vv-ECMO) auch bei Patienten mit morbider Adipositas eine Therapieoption.

Schlüsselwörter

Adipositas permagna ARDS Beatmungstherapie Lagerungstherapie Venovenöse extrakorporale Membranoxygenierung 

Extreme obesity—particular aspect of invasive and noninvasive ventilation

Abstract

The obesity rate is increasing worldwide and the percentage of obese patients in the intensive care unit (ICU) is rising concomitantly. Ventilatory support strategies in obese patients must take into account the altered pathophysiological conditions. Unfortunately, prospective randomized multicenter trials on this subject are lacking. Therefore, current strategies are based on the individual experiences of ICU physicians and single-center studies. Noninvasive ventilation (NIV) in critically ill patients with acute respiratory failure and obesity hypoventilation syndrome (OHS) is an efficient treatment option and should be provided as early as possible is an effort to avoid intubation. Patient positioning is also crucial: half-sitting positions (>45°) improve lung compliance and functional residual capacity in patients with respiratory failure. Transpulmonary pressure measurements or the Acute Respiratory Distress Syndrome (ARDS) Network tables may help to adjust the optimal positive end-expiratory pressure (PEEP). The tidal volume should be adapted to the ideal and not the actual bodyweight (Vt = 6 ml/kg of ideal bodyweight) to avoid lung damage and (additional) right ventricular stress. Under particular conditions, inspiratory pressures >30 cmH2O may be tolerated for a limited duration. Early tracheostomy combined with termination/reduction of sedation and relaxation is controversy discussed in the literature as a therapeutic option during invasive ventilation of morbidly obese patients. However, data on early tracheotomy in obese respiratory failure patients are rare and this should be regarded as an individual treatment attempt only. In cases of refractory lung failure, venovenous extracorporeal membrane oxygenation (vv-ECMO) is an option despite anatomic changes in morbid obesity.

Keywords

Morbid obesity Acute respiratory distress syndrome Respiratory management Positional therapy Venovenous extracorporeal membrane oxygenation 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Deppe und P. Lebiedz geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Adams KF et al (2006) Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N Engl J Med 355(8):763–778CrossRefGoogle Scholar
  2. 2.
    OECD (2010) Obesity and the economics of prevention: fit not fat. OECD, ParisCrossRefGoogle Scholar
  3. 3.
    Lewandowski K, Lewandowski M (2011) Intensive care in the obese. Best Pract Res Clin Anaesthesiol 25(1):95–108CrossRefGoogle Scholar
  4. 4.
    De Jong A et al (2013) Feasibility and effectiveness of prone position in morbidly obese patients with ARDS: a case-control clinical study. Chest 143(6):1554–1561CrossRefGoogle Scholar
  5. 5.
    O’Brien JM Jr. et al (2012) The association between body mass index, processes of care, and outcomes from mechanical ventilation: a prospective cohort study. Crit Care Med 40(5):1456–1463CrossRefGoogle Scholar
  6. 6.
    Sasabuchi Y et al (2015) The dose-response relationship between body mass index and mortality in subjects admitted to the ICU with and without mechanical ventilation. Respir Care 60(7):983–991CrossRefGoogle Scholar
  7. 7.
    WHO (2000) Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 894:i–xii (1–253)Google Scholar
  8. 8.
    Naimark A, Cherniack RM (1960) Compliance of the respiratory system and its components in health and obesity. J Appl Physiol 15:377–382CrossRefGoogle Scholar
  9. 9.
    Paolini JB et al (2010) Predictive value of abdominal obesity vs. body mass index for determining risk of intensive care unit mortality. Crit Care Med 38(5):1308–1314CrossRefGoogle Scholar
  10. 10.
    Eichenberger A et al (2002) Morbid obesity and postoperative pulmonary atelectasis: an underestimated problem. Anesth Analg 95(6):1788–1792 (table of contents)CrossRefGoogle Scholar
  11. 11.
    Sateia MJ (2014) International classification of sleep disorders-third edition: highlights and modifications. Chest 146(5):1387–1394CrossRefGoogle Scholar
  12. 12.
    Kauppert CA et al (2013) Pulmonary hypertension in obesity-hypoventilation syndrome. Respir Med 107(12):2061–2070CrossRefGoogle Scholar
  13. 13.
    Chlif M et al (2009) Effects of obesity on breathing pattern, ventilatory neural drive and mechanics. Respir Physiol Neurobiol 168(3):198–202CrossRefGoogle Scholar
  14. 14.
    Kress JP et al (1999) The impact of morbid obesity on oxygen cost of breathing (VO(2RESP)) at rest. Am J Respir Crit Care Med 160(3):883–886CrossRefGoogle Scholar
  15. 15.
    Pelosi P et al (1998) The effects of body mass on lung volumes, respiratory mechanics, and gas exchange during general anesthesia. Anesth Analg 87(3):654–660Google Scholar
  16. 16.
    Briscoe WA, Dubois AB (1958) The relationship between airway resistance, airway conductance and lung volume in subjects of different age and body size. J Clin Invest 37(9):1279–1285CrossRefGoogle Scholar
  17. 17.
    Zerah F et al (1993) Effects of obesity on respiratory resistance. Chest 103(5):1470–1476CrossRefGoogle Scholar
  18. 18.
    Westhoff M et al (2015) S3-Leitlinie: Nichtinvasive Beatmung als Therapie der akuten respiratorischen InsuffizienzGoogle Scholar
  19. 19.
    Carrillo A et al (2012) Noninvasive ventilation in acute hypercapnic respiratory failure caused by obesity hypoventilation syndrome and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 186(12):1279–1285CrossRefGoogle Scholar
  20. 20.
    Sequeira TC, BaHammam AS, Esquinas AM (2016) Noninvasive ventilation in the critically ill patient with obesity hypoventilation syndrome: a review. J Intensive Care Med 32(7):421–428. doi: 10.1177/0885066616663179 CrossRefGoogle Scholar
  21. 21.
    De Jong A, Chanques G, Jaber S (2017) Mechanical ventilation in obese ICU patients: from intubation to extubation. Crit Care 21(1):63CrossRefGoogle Scholar
  22. 22.
    Confalonieri M et al (2001) Respiratory intensive care units in Italy: a national census and prospective cohort study. Thorax 56(5):373–378CrossRefGoogle Scholar
  23. 23.
    Ciledag A et al (2010) Early use of noninvasive mechanical ventilation in patients with acute hypercapnic respiratory failure in a respiratory ward: a prospective study. Arch Bronconeumol 46(10):538–542CrossRefGoogle Scholar
  24. 24.
    Perilli V et al (2000) The effects of the reverse trendelenburg position on respiratory mechanics and blood gases in morbidly obese patients during bariatric surgery. Anesth Analg 91(6):1520–1525CrossRefGoogle Scholar
  25. 25.
    Lemyze M et al (2013) Effects of sitting position and applied positive end-expiratory pressure on respiratory mechanics of critically ill obese patients receiving mechanical ventilation. Crit Care Med 41(11):2592–2599CrossRefGoogle Scholar
  26. 26.
    Pelosi P et al (1998) Effects of the prone position on respiratory mechanics and gas exchange during acute lung injury. Am J Respir Crit Care Med 157(2):387–393CrossRefGoogle Scholar
  27. 27.
    Bein T, Bischoff M, Brückner U, Gebhardt K, Henzler D, Hermes C, Lewandowski K, Max M, Nothacker M, Staudinger T, Tryba M, Weber-Carstens S, Wrigge H (2015) S2e-Leitlinie: „Lagerungstherapie und Frühmobilisation zur Prophylaxe oder Therapie von pulmonalen Funktionsstörungen“Google Scholar
  28. 28.
    Bein T, Kuhlen R, Quintel M (2007) Beatmung in Bauchlage beim akuten Lungenversagen. Dtsch Arztebl Int 104(28-29):A-2048–A-2053Google Scholar
  29. 29.
    Guerin C et al (2013) Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 368(23):2159–2168CrossRefGoogle Scholar
  30. 30.
    David S, Wiesner O (2016) Das hypoxämische Lungenversagen. Med Klin Intensivmed Notfmed 111:186–195CrossRefGoogle Scholar
  31. 31.
    Pelosi P et al (1999) Positive end-expiratory pressure improves respiratory function in obese but not in normal subjects during anesthesia and paralysis. Anesthesiology 91(5):1221–1231CrossRefGoogle Scholar
  32. 32.
    Legras A et al (2015) Acute respiratory distress syndrome (ARDS)-associated acute cor pulmonale and patent foramen ovale: a multicenter noninvasive hemodynamic study. Crit Care 19:174CrossRefGoogle Scholar
  33. 33.
    Chiumello D et al (2016) Effect of body mass index in acute respiratory distress syndrome. Br J Anaesth 116(1):113–121CrossRefGoogle Scholar
  34. 34.
    Talmor D et al (2008) Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 359(20):2095–2104CrossRefGoogle Scholar
  35. 35.
    Putensen C, Wrigge H, Zinserling J (2007) Electrical impedance tomography guided ventilation therapy. Curr Opin Crit Care 13(3):344–350CrossRefGoogle Scholar
  36. 36.
    NIH NHLBI ARDS Clinical Network (2008) Mechanical ventilation protocol summary. http://www.ardsnet.org/files/ventilator_protocol_2008-07.pdf. Zugegriffen: 21.06.2017Google Scholar
  37. 37.
    Brower RG et al (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351(4):327–336CrossRefGoogle Scholar
  38. 38.
    Amato MB et al (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372(8):747–755CrossRefGoogle Scholar
  39. 39.
    Fan E, Villar J, Slutsky AS (2013) Novel approaches to minimize ventilator-induced lung injury. BMC Med 11:85CrossRefGoogle Scholar
  40. 40.
    De Prost N, Dreyfuss D (2012) How to prevent ventilator-induced lung injury? Minerva Anestesiol 78(9):1054–1066Google Scholar
  41. 41.
    Soroksky A, Esquinas A (2012) Goal-directed mechanical ventilation: Are we aiming at the right goals? A proposal for an alternative approach aiming at optimal lung compliance, guided by esophageal pressure in acute respiratory failure. Crit Care Res Pract. doi: 10.1155/2012/597932 Google Scholar
  42. 42.
    Sprung J et al (2003) The effects of tidal volume and respiratory rate on oxygenation and respiratory mechanics during laparoscopy in morbidly obese patients. Anesth Analg 97(1):268–274 (table of contents)CrossRefGoogle Scholar
  43. 43.
    The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342(18):1301–1308CrossRefGoogle Scholar
  44. 44.
    Reinius H et al (2009) Prevention of atelectasis in morbidly obese patients during general anesthesia and paralysis: a computerized tomography study. Anesthesiology 111(5):979–987CrossRefGoogle Scholar
  45. 45.
    Pirrone M et al (2016) Recruitment maneuvers and positive end-expiratory pressure titration in morbidly obese ICU patients. Crit Care Med 44(2):300–307CrossRefGoogle Scholar
  46. 46.
    Suzumura EA et al (2014) Effects of alveolar recruitment maneuvers on clinical outcomes in patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Intensive Care Med 40(9):1227–1240CrossRefGoogle Scholar
  47. 47.
    Hedenstierna G, Santesson J (1976) Breathing mechanics, dead space and gas exchange in the extremely obese, breathing spontaneously and during anaesthesia with intermittent positive pressure ventilation. Acta Anaesthesiol Scand 20(3):248–254CrossRefGoogle Scholar
  48. 48.
    Strom T, Martinussen T, Toft P (2010) A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet 375(9713):475–480CrossRefGoogle Scholar
  49. 49.
    Xing XZ et al (2015) Effect of sedation on short-term and long-term outcomes of critically ill patients with acute respiratory insufficiency. World J Emerg Med 6(2):147–152CrossRefGoogle Scholar
  50. 50.
    Papazian L et al (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363(12):1107–1116CrossRefGoogle Scholar
  51. 51.
    Kaese S, Zander MC, Lebiedz P (2016) Successful use of early percutaneous dilatational tracheotomy and the no sedation concept in respiratory failure in critically ill obese subjects. Respir Care 61(5):615–620CrossRefGoogle Scholar
  52. 52.
    Michels G, Kochanek M (2016) Repetitorium Internistische Intensivmedizin. Springer, HeidelbergGoogle Scholar
  53. 53.
    Aldawood AS, Arabi YM, Haddad S (2008) Safety of percutaneous tracheostomy in obese critically ill patients: a prospective cohort study. Anaesth Intensive Care 36(1):69–73CrossRefGoogle Scholar
  54. 54.
    Simon M et al (2013) Death after percutaneous dilatational tracheostomy: a systematic review and analysis of risk factors. Crit Care 17(5):R258CrossRefGoogle Scholar
  55. 55.
    Terragni PP et al (2010) Early vs late tracheotomy for prevention of pneumonia in mechanically ventilated adult ICU patients: a randomized controlled trial. JAMA 303(15):1483–1489CrossRefGoogle Scholar
  56. 56.
    Szakmany T et al (2015) Effect of early tracheostomy on resource utilization and clinical outcomes in critically ill patients: meta-analysis of randomized controlled trials. Br J Anaesth 114(3):396–405CrossRefGoogle Scholar
  57. 57.
    Karagiannidis C et al (2016) Extracorporeal membrane oxygenation: evolving epidemiology and mortality. Intensive Care Med 42(5):889–896CrossRefGoogle Scholar
  58. 58.
    Ull C et al (2015) Extremely obese patients treated with venovenous ECMO – an intensivist’s challenge. Am J Emerg Med 33(11):1720.e3–1720.e4CrossRefGoogle Scholar
  59. 59.
    Al-Soufi S et al (2013) Lack of association between body weight and mortality in patients on veno-venous extracorporeal membrane oxygenation. Intensive Care Med 39(11):1995–2002CrossRefGoogle Scholar
  60. 60.
    Kon ZN et al (2015) Class III obesity is not a contraindication to venovenous extracorporeal membrane oxygenation support. Ann Thorac Surg 100(5):1855–1860CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  1. 1.Klinik für Innere Medizin und Internistische IntensivmedizinEVK OldenburgOldenburgDeutschland

Personalised recommendations