Advertisement

Diaphragmale Dysfunktion

Fakten für den Kliniker
  • C. S. Bruells
  • G. Marx
Übersichten

Zusammenfassung

Die diaphragmale Funktion des kritisch kranken Patienten kann entscheidend für das Outcome im Rahmen einer Intensivbehandlung sein. Das Versagen der Atemmuskelpumpe insbesondere bei vorerkrankten Patienten beispielsweise im Rahmen einer akuten Exazerbation einer chronisch-obstruktiven Lungenerkrankung resultiert in einer Hyperkapnie und führt zur Intubationspflicht, wenn nichtinvasive Beatmungsverfahren versagen. Die Veränderungen der biomechanischen Eigenschaften durch eine Überblähung und Veränderungen der Faserstruktur des Diaphragmas können das Entstehen eines hyperkapnischen Atemversagens erleichtern und in eine maschinelle Beatmung münden. Nach Intubation und folgender Inaktivierung unterliegt das Diaphragma einer pathophysiologischen Kaskade, die zur Atrophie und Dysfunktion führt. Zusätzlich zu den Einflüssen durch die Inaktivierung (ventilatorinduzierte diaphragmale Dysfunktion) verändern Komorbiditäten, Pharmaka, und Erkrankungen die diaphragmale Homöostase. Insbesondere das Auftreten einer Sepsis kann während des Intensivaufenthalts das Diaphragma grundlegend verändern und so zum Weaningversagen führen. Die Erfassung der diaphragmalen Kraft in der Beatmungsentwöhnung gelingt aktuell nur mit invasiven Verfahren – sonographische Methoden werden zunehmend etabliert, benötigen aber noch weitere und größere Studien, um einen verlässlichen klinischen Nutzen zu ermöglichen.

Schlüsselwörter

Beatmungsentwöhnung Ventilatorinduzierte diaphragmale Dysfunktion Weaningversagen „ICU-acquired diaphragmatic weakness“ Chronisch-obstruktive Lungenerkrankung 

Diaphragm dysfunction

Facts for clinicians

Abstract

Diaphragm function is crucial for patient outcome in the ICU setting and during the treatment period. The occurrence of an insufficiency of the respiratory pump, which is predominantly formed by the diaphragm, may result in intubation after failure of noninvasive ventilation. Especially patients suffering from chronic obstructive pulmonary disease are in danger of hypercapnic respiratory failure. Changes in biomechanical properties and fiber texture of the diaphragm are further cofactors directly leading to a need for intubation and mechanical ventilation. After intubation and the following inactivity the diaphragm is subject to profound pathophysiologic changes resulting in atrophy and dysfunction. Besides this inactivity-triggered mechanism (termed as ventilator-induced diaphragmatic dysfunction) multiple factors, comorbidities, pharmaceutical agents and additional hits during the ICU treatment, especially the occurrence of sepsis, influence diaphragm homeostasis and can lead to weaning failure. During the weaning process monitoring of diaphragm function can be done with invasive methods – ultrasound is increasingly established to monitor diaphragm contraction, but further and better powered studies are in need to prove its value as a diagnostic tool.

Keywords

Weaning from mechanical ventilation Ventilator-induced diaphragm dysfunction Weaning failure ICU-acquired diaphragmatic weakness Chronic obstructive pulmonary disease 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C.S. Bruells und G. Marx geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Tobin MJ, Laghi F, Brochard L (1985) Role of the respiratory muscles in acute respiratory failure of COPD: lessons from weaning failure. J Appl Physiol 2009(107):962–970Google Scholar
  2. 2.
    Vassilakopoulos T, Petrof BJ (2004) Ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 169:336–341CrossRefGoogle Scholar
  3. 3.
    Levine S, Bashir MH, Clanton TL, Powers SK, Singhal S (2013) COPD elicits remodeling of the diaphragm and vastus lateralis muscles in humans. J Appl Physiol 114:1235–1245CrossRefGoogle Scholar
  4. 4.
    Maes K, Testelmans D, Cadot P, Deruisseau K, Powers SK, Decramer M et al (2008) Effects of acute administration of corticosteroids during mechanical ventilation on rat diaphragm. Am J Respir Crit Care Med 178:1219–1226CrossRefGoogle Scholar
  5. 5.
    Li X, Moody MR, Engel D, Walker S, Clubb FJ Jr., Sivasubramanian N et al (2000) Cardiac-specific overexpression of tumor necrosis factor-alpha causes oxidative stress and contractile dysfunction in mouse diaphragm. Circulation 102:1690–1696CrossRefGoogle Scholar
  6. 6.
    Callahan LA, Supinski GS (2009) Sepsis-induced myopathy. Crit Care Med 37:354–367CrossRefGoogle Scholar
  7. 7.
    Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C et al (2007) Weaning from mechanical ventilation. Eur Respir J 29:1033–1056CrossRefGoogle Scholar
  8. 8.
    Levine S, Kaiser L, Leferovich J, Tikunov B (1997) Cellular adaptations in the diaphragm in chronic obstructive pulmonary disease. N Engl J Med 337:1799–1806CrossRefGoogle Scholar
  9. 9.
    Mantilla CB, Sieck GC (2011) Phrenic motor unit recruitment during ventilatory and non-ventilatory behaviors. Respir Physiol Neurobiol 179:57–63CrossRefGoogle Scholar
  10. 10.
    Bruells CS, Rossaint R (2011) Physiology of gas exchange during anaesthesia. Eur J Anaesthesiol 28:570–579CrossRefGoogle Scholar
  11. 11.
    Demoule A, Jung B, Prodanovic H, Molinari N, Chanques G, Coirault C et al (2013) Diaphragm dysfunction on admission to the intensive care unit. Prevalence, risk factors, and prognostic impact – a prospective study. Am J Respir Crit Care Med 188:213–219CrossRefGoogle Scholar
  12. 12.
    Hooijman PE, Beishuizen A, Witt CC, de Waard MC, Girbes AR, Spoelstra-de Man AM et al (2015) Diaphragm muscle fiber weakness and ubiquitin-proteasome activation in critically ill patients. Am J Respir Crit Care Med 191:1126–1138CrossRefGoogle Scholar
  13. 13.
    van Hees H, Ottenheijm C, Ennen L, Linkels M, Dekhuijzen R, Heunks L (2011) Proteasome inhibition improves diaphragm function in an animal model for COPD. Am J Physiol Lung Cell Mol Physiol 301:L110–116CrossRefGoogle Scholar
  14. 14.
    Powers SK, Kavazis AN, McClung JM (2007) Oxidative stress and disuse muscle atrophy. J Appl Physiol 102:2389–2397CrossRefGoogle Scholar
  15. 15.
    Sigala I, Zacharatos P, Boulia S, Toumpanakis D, Michailidou T, Parthenis D et al (2012) Nitric oxide regulates cytokine induction in the diaphragm in response to inspiratory resistive breathing. J Appl Physiol. doi: 10.1152/japplphysiol.00233.2012 CrossRefPubMedGoogle Scholar
  16. 16.
    Jiang TX, Reid WD, Road JD (1998) Delayed diaphragm injury and diaphragm force production. Am J Respir Crit Care Med 157:736–742CrossRefGoogle Scholar
  17. 17.
    van Hees HW, Li YP, Ottenheijm CA, Jin B, Pigmans CJ, Linkels M et al (2008) Proteasome inhibition improves diaphragm function in congestive heart failure rats. Am J Physiol Lung Cell Mol Physiol 294:L1260–1268CrossRefGoogle Scholar
  18. 18.
    Poole DC, Kindig CA, Behnke BJ (2001) Effects of emphysema on diaphragm microvascular oxygen pressure. J Appl Physiol 168:1081–1086Google Scholar
  19. 19.
    Picard M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P et al (2012) Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. Am J Respir Crit Care Med 186:1140–1149CrossRefGoogle Scholar
  20. 20.
    Powers SK, Wiggs MP, Duarte JA, Zergeroglu AM, Demirel HA (2012) Mitochondrial signaling contributes to disuse muscle atrophy. Am J Physiol Endocrinol Metabol 303:E31–E39CrossRefGoogle Scholar
  21. 21.
    Powers SK, Hudson MB, Nelson WB, Talbert EE, Min K, Szeto HH et al (2011) Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med 39:1749–1759CrossRefGoogle Scholar
  22. 22.
    Smuder AJ, Kavazis AN, Hudson MB, Nelson WB, Powers SK (2010) Oxidation enhances myofibrillar protein degradation via calpain and caspase-3. Free Radic Biol Med 49:1152–1160CrossRefGoogle Scholar
  23. 23.
    Smuder AJ, Nelson WB, Hudson MB, Kavazis AN, Powers SK (2014) Inhibition of the ubiquitin-proteasome pathway does not protect against ventilator-induced accelerated proteolysis or atrophy in the diaphragm. Anesthesiology 121:115–126CrossRefGoogle Scholar
  24. 24.
    Bruells CS, Bergs I, Rossaint R, Du J, Bleilevens C, Goetzenich A et al (2014) Recovery of diaphragm function following mechanical ventilation in a rodent model. PLOS ONE 9:e87460CrossRefGoogle Scholar
  25. 25.
    Schellekens WJ, van Hees HW, Vaneker M, Linkels M, Dekhuijzen PN, Scheffer GJ et al (2012) Toll-like receptor 4 signaling in ventilator-induced diaphragm atrophy. Anesthesiology 117:329–338CrossRefGoogle Scholar
  26. 26.
    Powers SK, Shanely RA, Coombes JS, Koesterer TJ, McKenzie M, Van Gammeren D et al (2002) Mechanical ventilation results in progressive contractile dysfunction in the diaphragm. J Appl Physiol 92:1851–1858CrossRefGoogle Scholar
  27. 27.
    Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P et al (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358:1327–1335CrossRefGoogle Scholar
  28. 28.
    Maes K, Testelmans D, Powers S, Decramer M, Gayan-Ramirez G (2007) Leupeptin inhibits ventilator-induced diaphragm dysfunction in rats. Am J Resp Crit Care Med 175:1134–1138CrossRefGoogle Scholar
  29. 29.
    Agten A, Maes K, Smuder A, Powers SK, Decramer M, Gayan-Ramirez G (2011) N‑Acetylcysteine protects the rat diaphragm from the decreased contractility associated with controlled mechanical ventilation. Crit Care Med 39:777–782CrossRefGoogle Scholar
  30. 30.
    Smuder AJ, Min K, Hudson MB, Kavazis AN, Kwon OS, Nelson WB et al (2012) Endurance exercise attenuates ventilator-induced diaphragm dysfunction. J Appl Physiol 112:501–510CrossRefGoogle Scholar
  31. 31.
    Jaber S, Jung B, Matecki S, Petrof BJ (2011) Clinical review: ventilator-induced diaphragmatic dysfunction – human studies confirm animal model findings! Crit Care 15:206CrossRefGoogle Scholar
  32. 32.
    Breuer T, Maes K, Rossaint R, Marx G, Scheers H, Bergs I et al (2015) Sevoflurane exposure prevents diaphragmatic oxidative stress during mechanical ventilation but reduces force and affects protein metabolism even during spontaneous breathing in a rat model. Anesth Analg 121:73–80CrossRefGoogle Scholar
  33. 33.
    Bruells CS, Maes K, Rossaint R, Thomas D, Cielen N, Bergs I et al (2014) Sedation using propofol induces similar diaphragm dysfunction and atrophy during spontaneous breathing and mechanical ventilation in rats. Anesthesiology 120:665–672CrossRefGoogle Scholar
  34. 34.
    Maes K, Agten A, Smuder A, Powers SK, Decramer M, Gayan-Ramirez G (2010) Corticosteroid effects on ventilator-induced diaphragm dysfunction in anesthetized rats depend on the dose administered. Respir Res 11:178CrossRefGoogle Scholar
  35. 35.
    Testelmans D, Maes K, Wouters P, Powers SK, Decramer M, Gayan-Ramirez G (2007) Infusions of rocuronium and cisatracurium exert different effects on rat diaphragm function. Intensive Care Med 33:872–879CrossRefGoogle Scholar
  36. 36.
    Miranda M, Arroyo HA, Ledesma D, Sasbon J, Medina C, Fejerman N (2001) Polyneuropathy in critically ill patients: a seldom recognized cause of dependence on mechanical ventilators. Rev Neurol 32:838–843PubMedGoogle Scholar
  37. 37.
    Maes K, Stamiris A, Thomas D, Cielen N, Smuder A, Powers SK et al (2014) Effects of controlled mechanical ventilation on sepsis-induced diaphragm dysfunction in rats. Crit Care Med 42:e772–e782CrossRefGoogle Scholar
  38. 38.
    Schonhofer B, Euteneuer S, Nava S, Suchi S, Kohler D (2002) Survival of mechanically ventilated patients admitted to a specialised weaning centre. Intensive Care Med 28:908–916CrossRefGoogle Scholar
  39. 39.
    Hudson MB, Smuder AJ, Nelson WB, Bruells CS, Levine S, Powers SK (2012) Both high level pressure support ventilation and controlled mechanical ventilation induce diaphragm dysfunction and atrophy. Crit Care Med 40:1254–1260CrossRefGoogle Scholar
  40. 40.
    Futier E, Constantin JM, Combaret L, Mosoni L, Roszyk L, Sapin V et al (2008) Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm. Crit Care 12:R116CrossRefGoogle Scholar
  41. 41.
    Thomas D, Maes K, Agten A, Heunks LM, Dekhuijzen R, Decramer M et al (2013) Time course of diaphragm function recovery after controlled mechanical ventilation in rats. J Appl Physiol 115:775–784CrossRefGoogle Scholar
  42. 42.
    Jubran A, Grant BJ, Duffner LA, Collins EG, Lanuza DM, Hoffman LA et al (2013) Effect of pressure support vs unassisted breathing through a tracheostomy collar on weaning duration in patients requiring prolonged mechanical ventilation: a randomized trial. JAMA 309:671–677CrossRefGoogle Scholar
  43. 43.
    Heunks LM, van der Hoeven JG (2010) Clinical review: the ABC of weaning failure – a structured approach. Crit Care 14:245CrossRefGoogle Scholar
  44. 44.
    Viires N, Sillye G, Aubier M, Rassidakis A, Roussos C (1983) Regional blood flow distribution in dog during induced hypotension and low cardiac output. Spontaneous breathing versus artificial ventilation. J Clin Invest 72:935–947CrossRefGoogle Scholar
  45. 45.
    Davis RT 3rd, Bruells CS, Stabley JN, McCullough DJ, Powers SK, Behnke BJ (2012) Mechanical ventilation reduces rat diaphragm blood flow and impairs oxygen delivery and uptake. Crit Care Med 40:2858–2866CrossRefGoogle Scholar
  46. 46.
    Bruells CSBT, Maes K, Bleilevens C, Marx G, Gayan-Ramirez G, Rossaint R (2015) Influence of weaning methods on the diaphragm after mechanical ventilation – abstract. European Respiratory Society, AmsterdamGoogle Scholar
  47. 47.
    Matamis D, Soilemezi E, Tsagourias M, Akoumianaki E, Dimassi S, Boroli F et al (2013) Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensive Care Med 39:801–810CrossRefGoogle Scholar
  48. 48.
    Ayoub J, Cohendy R, Prioux J, Ahmaidi S, Bourgeois JM, Dauzat M et al (2001) Diaphragm movement before and after cholecystectomy: a sonographic study. Anesth Analg 92:755–761CrossRefGoogle Scholar
  49. 49.
    Cohn D, Benditt JO, Eveloff S, McCool FD (1985) Diaphragm thickening during inspiration. J Appl Physiol 1997(83):291–296Google Scholar
  50. 50.
    Goligher EC, Fan E, Herridge MS, Murray A, Vorona S, Brace D et al (2015) Evolution of diaphragm thickness during mechanical ventilation. Impact of inspiratory effort. Am J Respir Crit Care Med 192:1080–1088CrossRefGoogle Scholar
  51. 51.
    Umbrello M, Formenti P, Longhi D, Galimberti A, Piva I, Pezzi A et al (2015) Diaphragm ultrasound as indicator of respiratory effort in critically ill patients undergoing assisted mechanical ventilation: a pilot clinical study. Crit Care 19:161CrossRefGoogle Scholar
  52. 52.
    DiNino E, Gartman EJ, Sethi JM, McCool FD (2014) Diaphragm ultrasound as a predictor of successful extubation from mechanical ventilation. Thorax 69:423–427CrossRefGoogle Scholar
  53. 53.
    Jung B, Moury PH, Mahul M, de Jong A, Galia F, Prades A et al (2016) Diaphragmatic dysfunction in patients with ICU-acquired weakness and its impact on extubation failure. Intensive Care Med 42:853–861CrossRefGoogle Scholar
  54. 54.
    Hatam N, Goetzenich A, Rossaint R, Karfis I, Bickenbach J, Autschbach R et al (2014) A novel application for assessing diaphragmatic function by ultrasonic deformation analysis in noninvasively ventilated healthy young adults. Ultrasch Med 35:540–546CrossRefGoogle Scholar
  55. 55.
    Martin AD, Smith BK, Davenport PD, Harman E, Gonzalez-Rothi RJ, Baz M et al (2011) Inspiratory muscle strength training improves weaning outcome in failure to wean patients: a randomized trial. Crit Care 15:R84CrossRefGoogle Scholar
  56. 56.
    Doorduin J, van Hees HW, van der Hoeven JG, Heunks LM (2013) Monitoring of the respiratory muscles in the critically ill. Am J Respir Crit Care Med 187:20–27CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Klinik für Operative Intensivmedizin und Intermediate CareUniversitätsklinik der RWTH AachenAachenDeutschland

Personalised recommendations