Advertisement

Systematic Evaluation of Low-dose MDCT for Planning Purposes of Lumbosacral Periradicular Infiltrations

  • Nico SollmannEmail author
  • Kai Mei
  • Simon Schön
  • Isabelle Riederer
  • Felix K. Kopp
  • Maximilian T. Löffler
  • Monika Probst
  • Ernst J. Rummeny
  • Claus Zimmer
  • Jan S. Kirschke
  • Peter B. Noël
  • Thomas Baum
Original Article
  • 18 Downloads

Abstract

Purpose

To evaluate image quality and confidence for planning of periradicular infiltrations using virtually lowered tube currents and in-house developed iterative reconstruction (IR) for multidetector computed tomography (MDCT).

Methods

A total of 20 patients (mean age 54.9 ± 13.1 years) underwent MDCT for planning purposes of periradicular infiltrations at the lumbosacral spine (120 kVp and 100 mAs). Planning scans were simulated as if they were performed at 50% (D50), 10% (D10), 5% (D5), and 1% (D1) of the tube current of original scanning. Image reconstruction was achieved with two levels of IR (A: similar in appearance to clinical reconstructions, B: 10 times stronger noise reduction). Qualitative image evaluation was performed by two readers (R1 and R2) considering overall image quality and artifacts, image contrast, determination of nerve root, and confidence for intervention planning (scoring: 1 high, 2 medium, and 3 low confidence).

Results

Level A of IR was favorable regarding overall image quality, artifacts, image contrast, and nerve root depiction according to both readers, with preserved good to excellent scores down to D10 scans. The confidence for intervention planning was not significantly different (p > 0.05) between scans with tube currents virtually lowered down to 10% as compared to the original scans when using level A of IR (R1: 1.2 ± 0.4, R2: 1.1 ± 0.3). Inter-reader agreement for planning confidence was good to excellent (range of weighted Cohen’s kappa: 0.62–1.00).

Conclusion

The use of MDCT for planning purposes of lumbosacral periradicular infiltrations may be possible with tube currents lowered down to 10% of standard dose (equal to 10 mAs) without limitations in planning confidence.

Keywords

Image processing Interventional radiology Multidetector computed tomography Radiation dosage Spine 

Abbreviations

ALARA

As low as reasonably achievable

CTDIvol

Volumetric CT dose index

FOV

Field of view

HU

Hounsfield Units

IR

Iterative reconstruction

MDCT

Multidetector computed tomography

PACS

Picture archiving and communication system

R1

Reader 1

R2

Reader 2

SD

Standard deviation

Notes

Acknowledgements

We acknowledge support through the University of Pennsylvania Research Foundation (URF) and Philips Healthcare.

Compliance with ethical guidelines

Conflict of interest

N. Sollmann, K. Mei, S. Schön, I. Riederer, F.K. Kopp, M.T. Löffler, M. Probst, E.J. Rummeny, C. Zimmer, J.S. Kirschke, P.B. Noël and T. Baum declare that they have no conflict of interest regarding the methods used or results presented in this study.

Ethical standards

All investigations described in this manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current revised form). Informed consent was obtained from the patient in this case if identifiable from images or other information within the manuscript. Ethics Committee Registration Number: 62/18 S

References

  1. 1.
    Karppinen J, Malmivaara A, Kurunlahti M, Kyllönen E, Pienimäki T, Nieminen P, Ohinmaa A, Tervonen O, Vanharanta H.. Periradicular infiltration for sciatica: a randomized controlled trial. Spine (Phila Pa 1976). 2001;26:1059–67.CrossRefGoogle Scholar
  2. 2.
    Andreula C, Muto M, Leonardi M. Interventional spinal procedures. Eur J Radiol. 2004;50:112–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Palmer WE. Spinal injections for pain management. Radiology. 2016;281:669–88.CrossRefPubMedGoogle Scholar
  4. 4.
    Waggershauser T, Schwarzkopf S, Reiser M. Facet blockade, peridural and periradicular pain therapy. Radiologe. 2006;46:520–6.CrossRefGoogle Scholar
  5. 5.
    Seibel RM. Image-guided minimally invasive therapy. Surg Endosc. 1997;11:154–62.CrossRefGoogle Scholar
  6. 6.
    Cyteval C, Thomas E, Decoux E, Sarrabere MP, Cottin A, Blotman F, Taourel P. Cervical radiculopathy: open study on percutaneous periradicular foraminal steroid infiltration performed under CT control in 30 patients. AJNR Am J Neuroradiol. 2004;25:441–5.PubMedGoogle Scholar
  7. 7.
    Deml MC, Buhr M, Wimmer MD, Pflugmacher R, Riedel R, Rommelspacher Y, Kabir K. CT-guided infiltration saves surgical intervention and fastens return to work compared to anatomical landmark-guided infiltration in patients with lumbosciatica. Eur J Orthop Surg Traumatol. 2015;25(Suppl 1):S177–82.CrossRefPubMedGoogle Scholar
  8. 8.
    Yang K, Ganguli S, DeLorenzo MC, Zheng H, Li X, Liu B. Procedure-specific CT dose and utilization factors for CT-guided interventional procedures. Radiology. 2018;289:150–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Guberina N, Forsting M, Ringelstein A, Suntharalingam S, Nassenstein K, Theysohn J, Wetter A. Radiation exposure during CT-guided biopsies: recent CT machines provide markedly lower doses. Eur Radiol. 2018;28:3929–35.CrossRefPubMedGoogle Scholar
  10. 10.
    Schauberger JS, Kranz PG, Choudhury KR, Eastwood JD, Gray L, Hoang JK. CT-guided lumbar nerve root injections: Are we using the correct radiation dose settings? AJNR Am J Neuroradiol. 2012;33:1855–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.CrossRefGoogle Scholar
  12. 12.
    Richards PJ, George J. Diagnostic CT radiation and cancer induction. Skeletal Radiol. 2010;39:421–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Bevelacqua JJ. Practical and effective ALARA. Health Phys. 2010;98(Suppl 2):S39–47.CrossRefPubMedGoogle Scholar
  14. 14.
    Prasad KN, Cole WC, Haase GM. Radiation protection in humans: extending the concept of As Low As Reasonably Achievable (ALARA) from dose to biological damage. Br J Radiol. 2004;77:97–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Willemink MJ, de Jong PA, Leiner T, de Heer LM, Nievelstein RA, Budde RP, Schilham AM. Iterative reconstruction techniques for computed tomography part 1: technical principles. Eur Radiol. 2013;23:1623–31.CrossRefPubMedGoogle Scholar
  16. 16.
    Willemink MJ, Leiner T, de Jong PA, de Heer LM, Nievelstein RA, Schilham AM, Budde RP. Iterative reconstruction techniques for computed tomography part 2: initial results in dose reduction and image quality. Eur Radiol. 2013;23:1632–42.CrossRefPubMedGoogle Scholar
  17. 17.
    Willemink MJ, Noel PB. The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence. Eur Radiol. 2019;29:2185–95.CrossRefPubMedGoogle Scholar
  18. 18.
    Shpilberg KA, Delman BN, Tanenbaum LN, Esses SJ, Subramaniam R, Doshi AH. Radiation dose reduction in CT-guided spine biopsies does not reduce diagnostic yield. AJNR Am J Neuroradiol. 2014;35:2243–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Artner J, Cakir B, Weckbach S, Reichel H, Lattig F. Radiation dose reduction in CT-guided periradicular injections in lumbar spine: feasibility of a new institutional protocol for improved patient safety. Patient Saf Surg. 2012;6:19.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Artner J, Lattig F, Reichel H, Cakir B. Effective radiation dose reduction in computed tomography-guided spinal injections: a prospective, comparative study with technical considerations. Orthop Rev (Pavia). 2012;4:e24.CrossRefGoogle Scholar
  21. 21.
    Elsholtz FHJ, Schaafs LA, Köhlitz T, Hamm B, Niehues SM. Periradicular infiltration of the lumbar spine: testing the robustness of an interventional ultra-low-dose protocol at different body mass index levels. Acta Radiol. 2017;58:1364–70.CrossRefPubMedGoogle Scholar
  22. 22.
    Elsholtz FHJ, Schaafs LA, Erxleben C, Hamm B, Niehues SM. Periradicular infiltration of the lumbar spine: Is iterative reconstruction software necessary to establish ultra-low-dose protocols? A quantitative and qualitative approach. Radiol Med. 2018;123:827–32.CrossRefPubMedGoogle Scholar
  23. 23.
    Mei K, Kopp FK, Bippus R, Köhler T, Schwaiger BJ, Gersing AS, Fehringer A, Sauter A, Münzel D, Pfeiffer F, Rummeny EJ, Kirschke JS, Noël PB, Baum T. Is multidetector CT-based bone mineral density and quantitative bone microstructure assessment at the spine still feasible using ultra-low tube current and sparse sampling? Eur Radiol. 2017;27:5261–71.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Muenzel D, Koehler T, Brown K, Zabić S, Fingerle AA, Waldt S, Bendik E, Zahel T, Schneider A, Dobritz M, Rummeny EJ, Noël PB. Validation of a low dose simulation technique for computed tomography images. Plos One. 2014;9:e107843.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sollmann N, Mei K, Hedderich DM, Maegerlein C, Kopp FK, Löffler MT, Zimmer C, Rummeny EJ, Kirschke JS, Baum T, Noël PB. Multi-detector CT imaging: impact of virtual tube current reduction and sparse sampling on detection of vertebral fractures. Eur Radiol. 2019;29:3606–16.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sollmann N, Mei K, Schwaiger BJ, Gersing AS, Kopp FK, Bippus R, Maegerlein C, Zimmer C, Rummeny EJ, Kirschke JS, Noël PB, Baum T. Effects of virtual tube current reduction and sparse sampling on MDCT-based femoral BMD measurements. Osteoporos Int. 2018;29:2685–92.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Zabić S, Wang Q, Morton T, Brown KM. A low dose simulation tool for CT systems with energy integrating detectors. Med Phys. 2013;40:031102.CrossRefPubMedGoogle Scholar
  28. 28.
    Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena. 1992;60:259–68.CrossRefGoogle Scholar
  29. 29.
    Chan TF, Shen J. Image processing and analysis: variational, PDE, wavelet, and Stochastic methods. Philadelphia: Society for Industrial and Applied Mathematics (SIAM); 2005.CrossRefGoogle Scholar
  30. 30.
    Fessler JA. Statistical image reconstruction methods for transmission tomography. In: Fitzpatrick JM, Sonka M, editors. Medical image processing and analysis. Handbook of medical imaging, Vol. 2. SPIE Publications; 2000. pp. 1–70.Google Scholar
  31. 31.
    Kim D, Ramani S, Fessler JA. Combining ordered subsets and momentum for accelerated X‑ray CT image reconstruction. IEEE Trans Med Imaging. 2015;34:167–78.CrossRefPubMedGoogle Scholar
  32. 32.
    Richards PJ, George J, Metelko M, Brown M. Spine computed tomography doses and cancer induction. Spine (Phila Pa 1976). 2010;35:430–3.CrossRefPubMedGoogle Scholar
  33. 33.
    Mookiah MRK, Subburaj K, Mei K, Kopp FK, Kaesmacher J, Jungmann PM, Foehr P, Noel PB, Kirschke JS, Baum T. Multidetector computed tomography imaging: effect of sparse sampling and iterative reconstruction on trabecular bone microstructure. J Comput Assist Tomogr. 2018;42:441–7.CrossRefPubMedGoogle Scholar
  34. 34.
    Artner J, Lattig F, Reichel H, Cakir B. Effective dose of CT-guided epidural and periradicular injections of the lumbar spine: a retrospective study. Open Orthop J. 2012;6:357–61.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Nawfel RD, Judy PF, Silverman SG, Hooton S, Tuncali K, Adams DF. Patient and personnel exposure during CT fluoroscopy-guided interventional procedures. Radiology. 2000;216:180–4.CrossRefPubMedGoogle Scholar
  36. 36.
    Rogits B1, Jungnickel K, Löwenthal D, Kropf S, Nekolla EA, Dudeck O, Pech M, Wieners G, Ricke J. Prospective evaluation of the radiologist’s hand dose in CT-guided interventions. Rofo. 2013;185:1081–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Dietrich TJ, Peterson CK, Zeimpekis KG, Bensler S, Sutter R, Pfirrmann CWA. Fluoroscopy-guided versus CT-guided Lumbar Steroid Injections: Comparison of Radiation Exposure and Outcomes. Radiology. 2019;290:752–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nico Sollmann
    • 1
    • 2
    Email author
  • Kai Mei
    • 3
  • Simon Schön
    • 1
  • Isabelle Riederer
    • 1
  • Felix K. Kopp
    • 3
  • Maximilian T. Löffler
    • 1
  • Monika Probst
    • 1
  • Ernst J. Rummeny
    • 3
  • Claus Zimmer
    • 1
  • Jan S. Kirschke
    • 1
    • 2
  • Peter B. Noël
    • 3
    • 4
  • Thomas Baum
    • 1
  1. 1.Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  2. 2.TUM-Neuroimaging Center, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  3. 3.Department of Diagnostic and Interventional Radiology, Klinikum rechts der IsarTechnische Universität MünchenMunichGermany
  4. 4.Department of Radiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations