Magnetic Resonance Spectroscopy Features of the Visual Pathways in Patients with Glaucoma

  • Direnç Özlem AksoyEmail author
  • Jülide Canan Umurhan Akkan
  • Alpay Alkan
  • Ayşe Aralaşmak
  • Hafize Otçu Temur
  • İsmail Yurtsever
Original Article



The aim of the study was to investigate any metabolic changes on magnetic resonance spectroscopy (MRS) throughout the visual pathway of the brain in patients with glaucoma and a control group and correlate the results with clinical findings.

Material and Methods

A total of 87 patients were enrolled in the study, 30 healthy controls, 25 glaucoma, 16 suspected glaucoma (GS) and 16 ocular hypertension (OHT) patients. A single voxel MRS on TE 30 ms was performed by placing the volume of interest (VOI) on the corpus geniculatum laterale (CGL) and primary visual cortex (VC). Peak values of metabolites, such as N‑acetyl aspartate (NAA), creatine (Cr), choline (Cho) and Myo-inositol (Ins) were investigated on MRS. The MRS results were correlated with age, intraocular pressure (IOP), retinal nerve fiber length (RNFL), mean deviation (MD) and cup disk ratio (CD).


The NAA values obtained from the CGL in glaucoma and GS cases were lower than the healthy control group. The Cho values at CGL in glaucoma were lower than GS and controls. There was a negative correlation between NAA values of the VC and CD in glaucoma cases. Additionally, there was a negative correlation between age and RNFL in both glaucoma and GS cases.


The use of MRS can reveal neurodegeneration in CGL and VC in patients with glaucoma. Depiction of metabolic changes throughout the visual pathways via MRS will guide the treatment planning and follow-up in glaucoma and GS cases.


Corpus geniculatum laterale (CGL) Visual cortex (VC) N‑acetyl aspartate (NAA) Suspected glaucoma (GS) Open angle glaucoma 


Conflict of interest

D.Ö. Aksoy, J.C.U. Akkan, A. Alkan, A. Aralaşmak, H. Otçu and İ. Yurtsever declare that they have no competing interests.


  1. 1.
    Kingman S. Glaucoma is second leading cause of blindness globally. Bull World Health Organ. 2004;82:887–8.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Bourne RR, Stevens GA, White RA, Smith JL, Flaxman SR, Price H, Jonas JB, Keeffe J, Leasher J, Naidoo K, Pesudovs K, Resnikoff S, Taylor HR; Vision Loss Expert Group. Causes of vision loss worldwide, 1990–2010: a systematic analysis. Lancet Glob Health. 2013;1:e339–49.CrossRefGoogle Scholar
  3. 3.
    Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalance of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;12:2081–90.CrossRefGoogle Scholar
  4. 4.
    Gupta N, Ang LC, Noël de Tilly L, Bidaisee L, Yücel YH. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol. 2006;90:674–8.CrossRefGoogle Scholar
  5. 5.
    Garaci FG, Cozzolino V, Nucci C, Gaudiello F, Ludovici A, Lupattelli T, Floris R, Simonetti G. Advances in neuroimaging of the visual pathways and their use in glaucoma. Prog Brain Res. 2008;173:165–77.CrossRefGoogle Scholar
  6. 6.
    Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Lancet. 2017;309:2183–93.CrossRefGoogle Scholar
  7. 7.
    Harwerth RS, Quigley HA. Visual field defects and retinal ganglion cell losses in patients with glaucoma. Arch Ophthalmol. 2006;124:853–9.CrossRefGoogle Scholar
  8. 8.
    Lalezary M, Medeiros FA, Weinreb RN, Bowd C, Sample PA, Tavares IM, Tafreshi A, Zangwill LM. Baseline optical coherence tomography predicts the development of glaucomatous change in glaucoma suspects. Am J Ophthalmol. 2006;142:576–82.CrossRefGoogle Scholar
  9. 9.
    Lee JY, Jeong HJ, Lee JH, Kim YJ, Kim EY, Kim YY, Ryu T, Cho ZH, Kim YB. An investigation of lateral geniculate nucleus volume in patients with primary open-angle glaucoma using 7 tesla magnetic resonance imaging. Invest Ophthalmol Vis Sci. 2014;55:3468–76.CrossRefGoogle Scholar
  10. 10.
    Zikou AK, Kitsos G, Tzarouchi LC, Astrakas L, Alexiou GA, Argyropoulou MI. Voxel-based morphometry and diffusion tensor imaging of the optic pathway in primary open-angle glaucoma: a preliminary study. AJNR Am J Neuroradiol. 2012;33:128–34.CrossRefGoogle Scholar
  11. 11.
    Garaci FG, Bolacchi F, Cerulli A, Melis M, Spanò A, Cedrone C, Floris R, Simonetti G, Nucci C. Optic nerve and optic radiation neurodegeneration in patients with glaucoma: in vivo analysis with 3‑T diffusion-tensor MR imaging. Radiology. 2009;252:496–501.CrossRefGoogle Scholar
  12. 12.
    Lagrèze WA, Gaggl M, Weigel M, Schulte-Mönting J, Bühler A, Bach M, Munk RD, Bley TA.. Retrobulbar optic nerve diameter measured by high-speed magnetic resonance imaging as a biomarker for axonal loss in glaucomatous optic atrophy. Invest Ophthalmol Vis Sci. 2009;50:4223–8.CrossRefGoogle Scholar
  13. 13.
    Kashiwagi K, Okubo T, Tsukahara S. Association of magnetic resonance imaging of anterior optic pathway with glaucomatous visual field damage and optic disc cupping. J Glaucoma. 2004;13:189–95.CrossRefGoogle Scholar
  14. 14.
    Ramli NM, Sidek S, Rahman FA, Peyman M, Zahari M, Rahmat K, Ramli N. Novel use of 3T MRI in assessment of optic nerve volume in glaucoma. Graefes Arch Clin Exp Ophthalmol. 2014;252:995–1000.CrossRefGoogle Scholar
  15. 15.
    Yu L, Xie B, Yin X, Liang M, Evans AC, Wang J, Dai C. Reduced cortical thickness in primary open-angle glaucoma and its relationship to the retinal nerve fiber layer thickness. PLoS ONE. 2013;8:e73208.CrossRefGoogle Scholar
  16. 16.
    Sidek S, Ramli N, Rahmat K, Ramli NM, Abdulrahman F, Kuo TL. In vivo proton magnetic resonance spectroscopy (1H-MRS) evaluation of the metabolite concentration of optic radiation in primary open angle glaucoma. Eur Radiol. 2016;26:4404–12.CrossRefGoogle Scholar
  17. 17.
    Zhang Y, Chen X, Wen G, Wu G, Zhang X. Proton magnetic resonance spectroscopy (1H-MRS) reveals geniculocalcarine and striate area degeneration in primary glaucoma. PLoS ONE. 2013;8:e73197.CrossRefGoogle Scholar
  18. 18.
    van Velthoven ME, Faber DJ, Verbraak FD, van Leeuwen TG, de Smet MD. Recent developments in optical coherence tomography for imaging the retina. Prog Retin Eye Res. 2007;26:57–77.CrossRefGoogle Scholar
  19. 19.
    Hodapp E, Parrish RK II, Anderson DR. Clinical decisions in glaucoma. St Louis: The CV Mosby Co; 1993. pp. 52–61Google Scholar
  20. 20.
    Quigley HA, McKinnon SJ, Zack DJ, Pease ME, Kerrigan-Baumrind LA, Kerrigan DF, Mitchell RS. Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci. 2000;41:3460–6.PubMedGoogle Scholar
  21. 21.
    Zhou W, Muir ER, Chalfin S, Nagi KS, Duong TQ. MRI study of the posterior visual pathways in primary open angle glaucoma. J Glaucoma. 2017;26:173–81.CrossRefGoogle Scholar
  22. 22.
    Zhang QJ, Wang D, Bai ZL, Ren BC, Li XH. Diffusion tensor imaging of optic nerve and optic radiation in primary chronic angle-closure glaucoma using 3T magnetic resonance imaging. Int J Ophthalmol. 2015;8:975–9.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Doganay S, Cankaya C, Alkan A. Evaluation of corpus geniculatum laterale and vitreous fluid by magnetic resonance spectroscopy in patients with glaucoma; a preliminary study. Eye (Lond). 2012;26:1044–51.CrossRefGoogle Scholar
  24. 24.
    Nickells RW. Apoptosis of retinal ganglion cells in glaucoma: an update of the molecular pathways involved in cell death. Surv Ophthalmol. 1999;43:151–61.CrossRefGoogle Scholar
  25. 25.
    Dreyer EB, Zurakowski D, Schumer RA, Podos SM, Lipton SA. Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch Ophthalmol. 1996;114:299–305.CrossRefGoogle Scholar
  26. 26.
    Yen CL, Mar MH, Zeisel SH. Choline deficiency-induced apoptosis in PC12 cells is associated with diminished membrane phosphatidylcholine and sphingomyelin, accumulation of ceramide and diacylglycerol, and activation of a caspase. FASEB J. 1999;13:135–42.CrossRefGoogle Scholar
  27. 27.
    Chan KC, So KF, Wu EX. Proton magnetic resonance spectroscopy revealed choline reduction in the visual cortex in an experimental model of chronic glaucoma. Exp Eye Res. 2009;88:65–70.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of RadiologyBezmialem Vakif UniversityIstanbulTurkey
  2. 2.Department of OphthalmologyBezmialem Vakif UniversityIstanbulTurkey

Personalised recommendations