Advertisement

HNO Nachrichten

, Volume 49, Issue 2, pp 32–37 | Cite as

Schwerhörigkeit und mentale Prozesse

Auditorisches Training verbessert Sprachverstehen und kognitive Leistung

  • Aleksandra KupferbergEmail author
  • Andreas Koj
  • Andreas Radeloff
Fortbildung
  • 16 Downloads

Viele Schwerhörige nutzen ihre Hörgeräte nicht regelmäßig oder nur selten — mit fatalen Folgen. Denn jahrelang unversorgte Schwerhörigkeit kann auch die kognitiven Fähigkeiten beeinträchtigen und so das Sprachverstehen zusätzlich erschweren — ein Teufelskreis. Mit auditorischem Training lässt sich dem entgegenwirken.

Literatur

  1. 1.
    Hesse G, Eichhorn S, Laubert A. Hörfähigkeit und Schwerhörigkeit alter Menschen. HNO (2014), 62: 630–639. doi: https://doi.org/10.1007/s00106-014-2903-8CrossRefGoogle Scholar
  2. 2.
    Ptok M, Meyer S, Ptok A. [Hearing training, hearing therapy and auditory rehabilitation in hearing impaired individuals during the last few centuries]. HNO (2012), 60: 913–918. doi: https://doi.org/10.1007/s00106-012-2550-xCrossRefGoogle Scholar
  3. 3.
    Peelle JE, Troiani V, Grossman M, Wingfield A. Hearing loss in older adults affects neural systems supporting speech comprehension. J Neurosci Off J Soc Neurosci (2011), 31: 12638–12643. doi: https://doi.org/10.1523/JNEUROSCI.2559-11.2011CrossRefGoogle Scholar
  4. 4.
    Chen L-C, Sandmann P, Thorne JD, Bleichner MG, Debener S. Cross-Modal Functional Reorganization of Visual and Auditory Cortex in Adult Cochlear Implant Users Identified with fNIRS. Neural Plast (2016), 2016: 4382656. doi: https://doi.org/10.1155/2016/4382656PubMedGoogle Scholar
  5. 5.
    Sandmann P, Dillier N, Eichele T, Meyer M, Kegel A, Pascual-Marqui RD, Marcar VL, Jäncke L, Debener S. Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users. Brain J Neurol (2012), 135: 555–568. doi: https://doi.org/10.1093/brain/awr329CrossRefGoogle Scholar
  6. 6.
    Stropahl M, Debener S. Auditory cross-modal reorganization in cochlear implant users indicates audio-visual integration. NeuroImage Clin (2017), 16: 514–523. doi: https://doi.org/10.1016/j.nicl.2017.09.001CrossRefGoogle Scholar
  7. 7.
    Stropahl M, Plotz K, Schönfeld R, Lenarz T, Sandmann P, Yovel G, De Vos M, Debener S. Cross-modal reorganization in cochlear implant users: Auditory cortex contributes to visual face processing. NeuroImage (2015), 121: 159–170. doi: https://doi.org/10.1016/j.neuroimage.2015.07.062CrossRefGoogle Scholar
  8. 8.
    Campbell J, Sharma A. Cross-Modal Re-Organization in Adults with Early Stage Hearing Loss. PLOS ONE (2014), 9: e90594. doi: https://doi.org/10.1371/journal.pone.0090594CrossRefGoogle Scholar
  9. 9.
    Rouger J, Lagleyre S, Démonet J-F, Fraysse B, Deguine O, Barone P. Evolution of crossmodal reorganization of the voice area in cochlear-implanted deaf patients. Hum Brain Mapp (2012), 33: 1929–1940. doi: https://doi.org/10.1002/hbm.21331CrossRefGoogle Scholar
  10. 10.
    Eckert MA, Cute SL, Vaden KI, Kuchinsky SE, Dubno JR. Auditory cortex signs of age-related hearing loss. J Assoc Res Otolaryngol JARO (2012), 13: 703–713. doi: https://doi.org/10.1007/s10162-012-0332-5CrossRefGoogle Scholar
  11. 11.
    Lin FR, Ferrucci L, An Y, Goh JO, Doshi J, Metter EJ, Davatzikos C, Kraut MA, Resnick SM. Association of hearing impairment with brain volume changes in older adults. NeuroImage (2014), 90: 84–92. doi: https://doi.org/10.1016/j.neuroimage.2013.12.059CrossRefGoogle Scholar
  12. 12.
    Peelle JE, Johnsrude IS, Davis MH. Hierarchical processing for speech in human auditory cortex and beyond. Front Hum Neurosci (2010), 4: 51. doi: https://doi.org/10.3389/fnhum.2010.00051PubMedPubMedCentralGoogle Scholar
  13. 13.
    Weißbuch Cochlea-Implantat(CI)-Versorgung (DGHNO). Medconweb — Fachportal Für Med Available at: https://medconweb.de/index.php?thread/1971-wei%C3%9Fbuch-cochlea-implantat-ci-versorgung-dghno/ [Accessed January 30, 2019]
  14. 14.
    Burian K, Eisenwort B, Pfeifer C. Hörtraining: ein Trainingsprogramm für Kochlearimplantatträger und Hörgeräteträger. Stuttgart; New York: Thieme (1986).Google Scholar
  15. 15.
    Fu Q-J, Galvin JJ 3rd. Maximizing cochlear implant patients’ performance with advanced speech training procedures. Hear Res (2008), 242: 198–208. doi: https://doi.org/10.1016/j.heares.2007.11.010CrossRefGoogle Scholar
  16. 16.
    Fu Q-J, Galvin J, Wang X, Nogaki G. Moderate auditory training can improve speech performance of adult cochlear implant patients. Acoust Res Lett Online (2005), 6: 106–111. doi: https://doi.org/10.1121/1.1898345CrossRefGoogle Scholar
  17. 17.
    Schumann A, Hast A, Hoppe U. Speech Performance and Training Effects in the Cochlear Implant Elderly. Audiol Neurotol (2014), 19: 45–48. doi: https://doi.org/10.1159/000371611CrossRefGoogle Scholar
  18. 18.
    Stacey PC, Raine CH, O’Donoghue GM, Tapper L, Twomey T, Summerfield AQ. Effectiveness of computer-based auditory training for adult users of cochlear implants. Int J Audiol (2010), 49: 347–356. doi: https://doi.org/10.3109/14992020903397838CrossRefGoogle Scholar
  19. 19.
    Oba SI, Fu Q-J, Galvin JJ. Digit training in noise can improve cochlear implant users’ speech understanding in noise. Ear Hear (2011), 32: 573–581. doi: https://doi.org/10.1097/AUD.0b013e31820fc821CrossRefGoogle Scholar
  20. 20.
    McCormack A, Fortnum H. Why do people fitted with hearing aids not wear them? Int J Audiol (2013) 52:360–368. doi: https://doi.org/10.3109/14992027.2013.769066CrossRefGoogle Scholar
  21. 21.
    Lupsakko TA, Kautiainen HJ, Sulkava R. The non-use of hearing aids in people aged 75 years and over in the city of Kuopio in Finland. Eur Arch Oto-Rhino-Laryngol Off J Eur Fed Oto-Rhino-Laryngol Soc EUFOS Affil Ger Soc Oto-Rhino-Laryngol - Head Neck Surg (2005), 262: 165–169. doi: https://doi.org/10.1007/s00405-004-0789-xGoogle Scholar
  22. 22.
    Burk MH, Humes LE, Amos NE, Strauser LE. Effect of Training on Word-Recognition Performance in Noise for Young Normal-Hearing and Older Hearing-Impaired Listeners. Ear Hear (2006), 27: 263. doi: https://doi.org/10.1097/01.aud.0000215980.21158.a2CrossRefGoogle Scholar
  23. 23.
    Burk Matthew H., Humes Larry E. Effects of Training on Speech Recognition Performance in Noise Using Lexically Hard Words. J Speech Lang Hear Res (2007), 50: 25–40. doi: https://doi.org/10.1044/1092-4388(2007/003)CrossRefGoogle Scholar
  24. 24.
    Cainer KE, James C, Rajan R. Learning speech-in-noise discrimination in adult humans. Hear Res (2008), 238: 155–164. doi: https://doi.org/10.1016/j.heares.2007.10.001CrossRefGoogle Scholar
  25. 25.
    Sullivan JR, Thibodeau LM, Assmann PF. Auditory training of speech recognition with interrupted and continuous noise maskers by children with hearing impairment. J Acoust Soc Am (2013), 133: 495–501. doi: https://doi.org/10.1121/1.4770247CrossRefGoogle Scholar
  26. 26.
    Yund EW, Woods DL. Content and Procedural Learning in Repeated Sentence Tests of Speech Perception. Ear Hear (2010), 31: 769. doi: https://doi.org/10.1097/AUD.0b013e3181e68e4aCrossRefGoogle Scholar
  27. 27.
    Song JH, Skoe E, Banai K, Kraus N. Training to Improve Hearing Speech in Noise: Biological Mechanisms. Cereb Cortex (2012), 22: 1180–1190. doi: https://doi.org/10.1093/cercor/bhr196CrossRefGoogle Scholar
  28. 28.
    Gil D, Iorio MCM. Formal auditory training in adult hearing aid users. Clinics (2010), 65: 165–174. doi: https://doi.org/10.1590/S1807-59322010000200008CrossRefGoogle Scholar
  29. 29.
    Olson AD. Options for Auditory Training for Adults with Hearing Loss. Semin Hear (2015), 36: 284–295. doi: https://doi.org/10.1055/s-0035-1564461CrossRefGoogle Scholar
  30. 30.
    Bakin JS, Weinberger NM. Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Res (1990), 536: 271–286.CrossRefGoogle Scholar
  31. 31.
    Tremblay K. Beyond the Ear: Physiological Perspectives on Auditory Rehabilitation. (2005). doi: https://doi.org/10.1055/s-2005-916374Google Scholar
  32. 32.
    Villers-Sidani E de, Alzghoul L, Zhou X, Simpson KL, Lin RCS, Merzenich MM. Recovery of functional and structural age-related changes in the rat primary auditory cortex with operant training. Proc Natl Acad Sci (2010), 107: 13900–13905. doi: https://doi.org/10.1073/pnas.1007885107CrossRefGoogle Scholar
  33. 33.
    Anderson S, White-Schwoch T, Parbery-Clark A, Kraus N. Reversal of age-related neural timing delays with training. Proc Natl Acad Sci U S A (2013), 110: 4357–4362. doi: https://doi.org/10.1073/pnas.1213555110CrossRefGoogle Scholar
  34. 34.
    Filippini R, Befi-Lopes DM, Schochat E. Efficacy of Auditory Training Using the Auditory Brainstem Response to Complex Sounds: Auditory Processing Disorder and Specific Language Impairment. Folia Phoniatr Logop (2012), 64: 217–226. doi: https://doi.org/10.1159/000342139CrossRefGoogle Scholar
  35. 35.
    Tremblay K, Kraus N, McGee T, Ponton C, Otis and B. Central Auditory Plasticity: Changes in the N1-P2 Complex after Speech-Sound Training. Ear Hear (2001), 22: 79.CrossRefGoogle Scholar
  36. 36.
    Tremblay KL, Shahin AJ, Picton T, Ross B. Auditory training alters the physiological detection of stimulus-specific cues in humans. Clin Neurophysiol (2009), 120: 128–135. doi: https://doi.org/10.1016/j.clinph.2008.10.005CrossRefGoogle Scholar
  37. 37.
    Davies HR, Cadar D, Herbert A, Orrell M, Steptoe A. Hearing Impairment and Incident Dementia: Findings from the English Longitudinal Study of Ageing. J Am Geriatr Soc (2017), 65: 2074–2081. doi: https://doi.org/10.1111/jgs.14986CrossRefGoogle Scholar
  38. 38.
    Fritze T, Teipel S, Óvári A, Kilimann I, Witt G, Doblhammer G. Hearing Impairment Affects Dementia Incidence. An Analysis Based on Longitudinal Health Claims Data in Germany. PloS One (2016), 11: e0156876. doi: https://doi.org/10.1371/journal.pone.0156876PubMedGoogle Scholar
  39. 39.
    Heywood R, Gao Q, Nyunt MSZ, Feng L, Chong MS, Lim WS, Yap P, Lee T-S, Yap KB, Wee SL, et al. Hearing Loss and Risk of Mild Cognitive Impairment and Dementia: Findings from the Singapore Longitudinal Ageing Study. Dement Geriatr Cogn Disord (2017), 43: 259–268. doi: https://doi.org/10.1159/000464281CrossRefGoogle Scholar
  40. 40.
    Lin FR, Metter EJ, O’Brien RJ, Resnick SM, Zonderman AB, Ferrucci L. Hearing loss and incident dementia. Arch Neurol (2011), 68: 214–220. doi: https://doi.org/10.1001/archneurol.2010.362PubMedPubMedCentralGoogle Scholar
  41. 41.
    Acevedo A, Loewenstein D. Nonpharmacological cognitive interventions in aging and dementia. J Geriatr Psychiatry Neurol (2007), 20: 239–249. doi: https://doi.org/10.1177/0891988707308808CrossRefGoogle Scholar
  42. 42.
    Valenzuela MJ, Sachdev P. Brain reserve and dementia: A systematic review. Psychol Med (2006), 36: 441–454. doi: https://doi.org/10.1017/S0033291705006264CrossRefGoogle Scholar
  43. 43.
    Valenzuela MJ, Sachdev P. Brain reserve and cognitive decline: A non-parametric systematic review. Psychol Med (2006), 36: 1065–1073. doi: https://doi.org/10.1017/S0033291706007744CrossRefGoogle Scholar
  44. 44.
    Verghese J, Lipton RB, Katz MJ, Hall CB, Derby CA, Kuslansky G, Ambrose AF, Sliwinski M, Buschke H. Leisure Activities and the Risk of Dementia in the Elderly. N Engl J Med (2003), 348: 2508–2516. doi: https://doi.org/10.1056/NEJMoa022252CrossRefGoogle Scholar
  45. 45.
    Wilson RS, Mendes De Leon CF, Barnes LL, Schneider JA, Bienias JL, Evans DA, Bennett DA. Participation in cognitively stimulating activities and risk of incident Alzheimer disease. JAMA (2002), 287: 742–748.CrossRefGoogle Scholar
  46. 46.
    Milgram NW, Siwak-Tapp CT, Araujo J, Head E. Neuroprotective effects of cognitive enrichment. Ageing Res Rev (2006), 5: 354–369. doi: https://doi.org/10.1016/j.arr.2006.04.004CrossRefGoogle Scholar
  47. 47.
    O’Brien JL, Lister JJ, Fausto BA, Clifton GK, Edwards JD. Cognitive Training Enhances Auditory Attention Efficiency in Older Adults. Front Aging Neurosci (2017), 9: doi: https://doi.org/10.3389/fnagi.2017.00322
  48. 48.
    Anderson S, White-Schwoch T, Choi HJ, Kraus N. Training changes processing of speech cues in older adults with hearing loss. Front Syst Neurosci (2013), 7: 97. doi: https://doi.org/10.3389/fnsys.2013.00097CrossRefGoogle Scholar
  49. 49.
    Smith GE, Housen P, Yaffe K, Ruff R, Kennison RF, Mahncke HW, Zelinski EM. A Cognitive Training Program Based on Principles of Brain Plasticity: Results from the Improvement in Memory with Plasticity-based Adaptive Cognitive Training (IMPACT) Study. J Am Geriatr Soc (2009), 57: 594–603. doi: https://doi.org/10.1111/j.1532-5415.2008.02167.xCrossRefGoogle Scholar
  50. 50.
    Willis SL, Tennstedt SL, Marsiske M, Ball K, Elias J, Koepke KM, Morris JN, Rebok GW, Unverzagt FW, Stoddard AM, et al. Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA (2006), 296: 2805–2814. doi: https://doi.org/10.1001/jama.296.23.2805CrossRefGoogle Scholar
  51. 51.
    Burk MH, Humes LE. Effects of Long-Term Training on Aided Speech-Recognition Performance in Noise in Older Adults. J Speech Lang Hear Res JSLHR (2008), 51: 759–771. doi: https://doi.org/10.1044/1092-4388(2008/054)CrossRefGoogle Scholar
  52. 52.
    Stecker GC, Bowman GA, Yund EW, Herron TJ, Roup CM, Woods DL. Perceptual training improves syllable identification in new and experienced hearing aid users. J Rehabil Res Dev (2006), 43: 537–552.CrossRefGoogle Scholar
  53. 53.
    Cheng Y, Wu W, Feng W, Wang J, Chen Y, Shen Y, Li Q, Zhang X, Li C. The effects of multi-domain versus single-domain cognitive training in non-demented older people: a randomized controlled trial. BMC Med (2012), 10: 30. doi: https://doi.org/10.1186/1741-7015-10-30CrossRefGoogle Scholar
  54. 54.
    Meister H, Rahlmann S, Walger M, Margolf-Hackl S, Kiesling J. Hearing aid fitting in older persons with hearing impairment: the influence of cognitive function, age, and hearing loss on hearing aid benefit. Clin Interv Aging (2015), 10: 435–443. doi: https://doi.org/10.2147/CIA.S77096CrossRefGoogle Scholar
  55. 55.
    Levitt H, Oden C, Simon H, Noack C, Lotze A. Entertainment overcomes barriers of auditory training. Hear J (2011), 64: 40. doi: https://doi.org/10.1097/01.HJ.0000403510.80465.7bCrossRefGoogle Scholar
  56. 56.
    Chisolm TH, Saunders GH, Frederick MT, McArdle RA, Smith SL, Wilson RH. Learning to listen again: the role of compliance in auditory training for adults with hearing loss. Am J Audiol (2013), 22: 339–342. doi: https://doi.org/10.1044/1059-0889(2013/12-0081)CrossRefGoogle Scholar
  57. 57.
    Henderson Sabes J, Sweetow RW. Variables predicting outcomes on listening and communication enhancement (LACE) training. Int J Audiol (2007), 46: 374–383. doi: https://doi.org/10.1080/14992020701297565CrossRefGoogle Scholar
  58. 58.
    Olson AD, Preminger JE, Shinn JB. The effect of LACE DVD training in new and experienced hearing aid users. J Am Acad Audiol (2013), 24: 214–230. doi: https://doi.org/10.3766/jaaa.24.3.7CrossRefGoogle Scholar
  59. 59.
    Amieva H, Ouvrard C, Giulioli C, Meillon C, Rullier L, Dartigues J-F. Self]Reported Hearing Loss, Hearing Aids, and Cognitive Decline in Elderly Adults: A 25]Year Study. J Am Geriatr Soc (2015), 63: 2099–2104. doi: https://doi.org/10.1111/jgs.13649CrossRefGoogle Scholar
  60. 60.
    Qian ZJ, Wattamwar K, Caruana FF, Otter J, Leskowitz MJ, Siedlecki B, Spitzer JB, Lalwani AK. Hearing Aid Use is Associated with Better Mini-Mental State Exam Performance. Am J Geriatr Psychiatry (2016), 24: 694–702. doi: https://doi.org/10.1016/j.jagp.2016.03.005CrossRefGoogle Scholar
  61. 61.
    Acar B, Yurekli MF, Babademez MA, Karabulut H, Karasen RM. Effects of hearing aids on cognitive functions and depressive signs in elderly people. Arch Gerontol Geriatr (2011), 52: 250–252. doi: https://doi.org/10.1016/j.archger.2010.04.013CrossRefGoogle Scholar
  62. 62.
    de Miranda EC, Gil D, Iorio MCM. Formal auditory training in elderly hearing aid users. Braz J Otorhinolaryngol (2008), 74: 919–925. doi: https://doi.org/10.1016/S1808-8694(15)30154-3CrossRefGoogle Scholar
  63. 63.
    Lazard DS, Vincent C, Venail F, Heyning PV de, Truy E, Sterkers O, Skarzynski PH, Skarzynski H, Schauwers K, O’Leary S, et al. Pre-, Per- and Postoperative Factors Affecting Performance of Postlinguistically Deaf Adults Using Cochlear Implants: A New Conceptual Model over Time. PLOS ONE (2012), 7: e48739. doi: https://doi.org/10.1371/journal.pone.0048739CrossRefGoogle Scholar
  64. 64.
    Doucet ME, Bergeron F, Lassonde M, Ferron P, Lepore F. Cross-modal reorganization and speech perception in cochlear implant users. Brain J Neurol (2006), 129: 3376–3383. doi: https://doi.org/10.1093/brain/awl264CrossRefGoogle Scholar
  65. 65.
    Fellinger J, Holzinger D, Gerich J, Goldberg D. Mental distress and quality of life in the hard of hearing. Acta Psychiatr Scand (2007), 115: 243–245. doi: https://doi.org/10.1111/j.1600-0447.2006.00976.xCrossRefGoogle Scholar
  66. 66.
    Werf M van der, Thewissen V, Dominguez MD, Lieb R, Wittchen H, Os J van. Adolescent development of psychosis as an outcome of hearing impairment: a 10-year longitudinal study. Psychol Med (2011), 41: 477–485. doi: https://doi.org/10.1017/S0033291710000978CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Aleksandra Kupferberg
    • 1
    Email author
  • Andreas Koj
    • 2
  • Andreas Radeloff
    • 2
  1. 1.Abteilung für Molekulare PsychiatrieUniversitäre psychiatrische Dienste Bern (UPD)Bern 60Switzerland
  2. 2.

Personalised recommendations