Advertisement

Herz

, Volume 44, Issue 6, pp 491–501 | Cite as

Pulmonary hypertension and valvular heart disease

  • T. Tichelbäcker
  • D. Dumitrescu
  • F. Gerhardt
  • D. Stern
  • M. Wissmüller
  • M. Adam
  • T. Schmidt
  • C. Frerker
  • R. Pfister
  • M. Halbach
  • S. Baldus
  • S. RosenkranzEmail author
Main topic

Abstract

Pulmonary hypertension (PH) is an important contributor to morbidity and mortality in patients with left-sided heart disease, including valvular heart disease. In this context, elevated left atrial pressure primarily leads to the development of post-capillary PH. Despite the fact that repair of left-sided valvular heart disease by surgical or interventional approaches will improve PH, recent studies have highlighted that PH (pre- or post-interventional) remains an important predictor of long-term outcome. Here, we review the current knowledge on PH in valvular heart disease taking into account new hemodynamic PH definitions, and the distinction between post- and pre-capillary components of PH. A specific focus is on the precise characterization of hemodynamics and cardiopulmonary interaction, and on potential strategies for the management of residual PH after mitral or aortic valve interventions. In addition, we highlight the clinical significance of tricuspid regurgitation, which may occur as a primary condition or as a consequence of PH and right heart dilatation (functional). In this context, proper patient selection for potential tricuspid valve interventions is crucial. Finally, the article highlights gaps in evidence, and points toward future perspectives.

Keywords

Valvular heart diseases Mitral valve disease Aortic stenosis Tricuspid regurgitation Pulmonary hypertension 

Pulmonale Hypertonie und Herzklappenerkrankungen

Zusammenfassung

Die pulmonale Hypertonie (PH) ist ein bedeutender Einflussfaktor für die Morbidität und Mortalität bei Patienten mit einer Linksherzerkrankung. Dies gilt insbesondere auch für Klappenvitien. Hierbei führt ein erhöhter linksatrialer Druck primär zur Ausbildung einer postkapillären PH. Obgleich die Behandlung linksseitiger Klappenvitien mittels chirurgischer oder interventioneller Strategien in der Regel zu einer Besserung der PH führt, haben aktuelle Studien übereinstimmend gezeigt, dass eine bestehende PH (prä- oder postinterventionell) einen wichtigen Prädiktor für das Langzeitüberleben darstellt. Der vorliegende Artikel bietet einen Überblick über den aktuellen Kenntnisstand zur PH bei Klappenvitien unter Berücksichtigung neuer hämodynamischer PH-Definitionen und der Differenzierung zwischen post- und präkapillären Komponenten einer PH. Ein spezifischer Fokus liegt auf der präzisen Charakterisierung der Hämodynamik sowie der kardiopulmonalen Interaktion und auf potenziellen Strategien für die Behandlung einer residuellen PH nach Interventionen an der Mitral- oder Aortenklappe. Des Weiteren erörtern die Autoren die klinische Bedeutung der Trikuspidalklappeninsuffizienz, die als primäre Klappenproblematik oder als Folge einer PH und Rechtsherzdilatation (funktionell) auftreten kann. In diesem Zusammenhang kommt der fundierten Patientenauswahl für potenzielle Trikuspidalklappeninterventionen entscheidende Bedeutung zu. Abschließend werden wichtige Evidenzlücken und Zukunftsperspektiven aufgezeigt.

Schlüsselwörter

Herzklappenerkrankungen Mitralklappenvitium Aortenstenose Trikuspidalinsuffizienz Pulmonale Hypertonie 

Notes

Compliance with ethical guidelines

Conflict of interest

T. Tichelbäcker, M. Wissmüller, C. Frerker, M. Halbach, and S. Baldus declare that they have no competing interests. D. Dumitrescu declares honoraria for lectures and/or consultancy from Actelion, Bayer, GSK, Novartis, Pfizer, Servier; participation in clinical trials for Actelion, Bayer, GSK, Novartis; and research support to institution from Actelion. F. Gerhardt declares remunerations for lectures and/or consultancy from Actelion, Bayer, GSK, MSD, and United Therapeutics; grants to institution from Actelion, Bayer, Novartis, und United Therapeutics. D. Stern declares honoraria for lectures from Actelion. M. Adam declares remunerations for lectures and/or consultancy from Edwards LifeSciences. T. Schmidt declares remunerations for lectures and/or consultancy from Edwards LifeSciences. R. Pfister declares speaker fees and travel support from Abbott Vascular, Bayer, Bristol Myers Squibb, Daiichi Sankyo, Edwards LifeSciences, Novartis, Orion Pharma, Pfizer, and Servier. S. Rosenkranz declares remunerations for lectures and/or consultancy from Abbott, Actelion, Arena, Bayer, Ferrer, GSK, MSD, Novartis, Pfizer, and United Therapeutics; research support to institution from Actelion, Bayer, Novartis, Pfizer, and United Therapeutics.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

References

  1. 1.
    Hoeper MM, Humbert M, Souza R et al (2016) A global view of pulmonary hypertension. Lancet Respir Med 4:306–322CrossRefPubMedGoogle Scholar
  2. 2.
    Simonneau G, Montani D, Celermajer DS et al (2019) Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 53:1801913CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rosenkranz S, Gibbs JSR, Wachter R et al (2016) Left ventricular heart failure and pulmonary hypertension. Eur Heart J 37:942–954CrossRefPubMedGoogle Scholar
  4. 4.
    Zlotnick DM, Ouellette ML, Malenka DJ et al (2013) Effect of pulmonary hypertension on outcomes in patients with severe aortic stenosis following surgical aortic valve replacement. Am J Cardiol 112:1635–1640CrossRefPubMedGoogle Scholar
  5. 5.
    Melby SJ, Moon MR, Lindman BR et al (2011) Impact of pulmonary hypertension on outcomes after aortic valve replacement for aortic valve stenosis. J Thorac Cardiovasc Surg 141:1424–1430CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Yang B, De Benedictus C, Watt T et al (2016) The impact of concomitant pulmonary hypertension on early and late outcomes following surgery for mitral stenosis. J Thorac Cardiovasc Surg 152:394–400CrossRefPubMedGoogle Scholar
  7. 7.
    O’Sullivan CJ, Wenaweser P, Ceylan O et al (2015) Effect of pulmonary hypertension hemodynamic presentation on clinical outcomes in patients with severe symptomatic aortic valve stenosis undergoing transcatheter aortic valve implantation: insights from the new proposed pulmonary hypertension classification. Circ Cardiovasc Interv 8:e2358PubMedGoogle Scholar
  8. 8.
    Luçon A, Oger E, Bedossa M et al (2014) Prognostic implications of pulmonary hypertension in patients with severe aortic stenosis undergoing transcatheter aortic valve implantation: study from the FRANCE 2 registry. Circ Cardiovasc Interv 7:240–247CrossRefPubMedGoogle Scholar
  9. 9.
    Sinning JM, Hammerstingl C, Chin D et al (2014) Decrease of pulmonary hypertension impacts on prognosis after transcatheter aortic valve replacement. EuroIntervention 9:1042–1049CrossRefPubMedGoogle Scholar
  10. 10.
    Masri A, Abdelkarim I, Sharbaugh MS et al (2018) Outcomes of persistent pulmonary hypertension following transcatheter aortic valve replacement. Heart 104:821–827CrossRefPubMedGoogle Scholar
  11. 11.
    Tigges E, Blankenberg S, von Bardeleben RS et al (2018) Implication of pulmonary hypertension in patients undergoing MitraClip therapy: results from the German transcatheter mitral valve interventions (TRAMI) registry. Eur J Heart Fail 20:585–594CrossRefPubMedGoogle Scholar
  12. 12.
    Mentias A, Patel H, Patel K et al (2016) Effect of pulmonary vascular pressures on long-term outcome in patients with primary mitral regurgitation. J Am Coll Cardiol 67:2952–2961CrossRefPubMedGoogle Scholar
  13. 13.
    Gual-Capllonch F, Teis A, Ferrer E et al (2018) Pulmonary vascular resistance versus pulmonary artery pressure for predicting right ventricular remodeling and functional tricuspid regurgitation. Echocardiography 35:1736–1745CrossRefPubMedGoogle Scholar
  14. 14.
    Taramasso M, Pazzoli A, Basso C et al (2018) Compare and contrast tricuspid and mitral valve anatomy: interventional perspectives for transcatheter tricuspid valve therapies. EuroIntervention 13:1889–1898CrossRefGoogle Scholar
  15. 15.
    Galiè N, Humbert M, Vachiery JL et al (2016) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 37:67–119CrossRefPubMedGoogle Scholar
  16. 16.
    Maron BA, Hess E, Maddox TM et al (2016) Association of borderline pulmonary hypertension with mortality and hospitalization in a large patient cohort: Insights from the Veterans Affairs clinical assessment, reporting, and tracking program. Circulation 133:1240–1248CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Assad TR, Maron BA, Robbins IM et al (2017) Prognostic effect and longitudinal hemodynamic assessment of borderline pulmonary hypertension. JAMA Cardiol 2:1361–1368CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Douschan P, Kovacs G, Avian A et al (2018) Mild elevation of pulmonary arterial pressure as a predictor of mortality. Am J Respir Crit Care Med 197:509–516CrossRefPubMedGoogle Scholar
  19. 19.
    Kolte D, Lakshmanan S, Jankowich MD et al (2018) Mild pulmonary hypertension is associated with increased mortality: a systematic review and meta-analysis. J Am Heart Assoc 7:e9729CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Vachiéry JL, Tedford RJ, Rosenkranz S et al (2019) Pulmonary hypertension due to left heart disease. Eur Respir J. https://doi.org/10.1183/13993003.01897–2018Google Scholar
  21. 21.
    Rosenkranz S, Lang IM, Blind R et al (2018) Pulmonary hypertension associated with left heart disease: updated recommendations of the Cologne Consensus Conference 2018. Int J Cardiol 272:S53–S62CrossRefGoogle Scholar
  22. 22.
    Vanderpool RR, Saul M, Nouraie M et al (2018) Association between hemodynamic markers of pulmonary hypertension and outcomes in patients with heart failure and preserved ejection fraction. JAMA Cardiol 3:298–306CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Palazzini M, Dardi F, Manes A et al (2018) Pulmonary hypertension due to left-heart disease: analysis of survival according to the haemodynamic classification of the 2015 ESC/ERS guidelines and new insights for future changes. Eur J Heart Fail 20:248–255CrossRefPubMedGoogle Scholar
  24. 24.
    Caravita S, Dewachter C, Soranna D et al (2018) Haemodynamics to predict outcome in pulmonary hypertension due to left heart disease: a meta-analysis. Eur Respir J 51(4):1702427CrossRefPubMedGoogle Scholar
  25. 25.
    Guazzi M, Naeije R (2017) Pulmonary hypertension in heart failure: Pathophysiology, pathobiology, and emerging clinical perspectives. J Am Coll Cardiol 69:1718–1734CrossRefPubMedGoogle Scholar
  26. 26.
    Chandrashekhar Y, Westaby S, Narula J (2009) Mitral stenosis. Lancet 374:1271–1283CrossRefPubMedGoogle Scholar
  27. 27.
    Wood P, Besterman EM, Towers MK, Mcilroy MB (1957) The effect of acetylcholine on pulmonary vascular resistance and left atrial pressure in mitral stenosis. Br Heart J 19:279–286CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Braunwald E, Braunwald NS, Ross J, Morrow AG (1965) Effects of mitral valve replacement on the pulmonary vascular dynamics of patients with pulmonary hypertension. N Engl J Med 273:509–514CrossRefPubMedGoogle Scholar
  29. 29.
    Dalen JE, Matloff JM, Evans GL et al (1967) Early reduction of pulmonary vascular resistance after mitral-valve replacement. N Engl J Med 277:387–394CrossRefPubMedGoogle Scholar
  30. 30.
    Dev V, Shrivastava S (1991) Time course of changes in pulmonary vascular resistance and the mechanism of regression of pulmonary arterial hypertension after balloon mitral valvuloplasty. Am J Cardiol 67:439–442CrossRefPubMedGoogle Scholar
  31. 31.
    Tsukashita M, Takayama H, Takeda K et al (2015) Effect of pulmonary vascular resistance before left ventricular assist device implantation on short- and long-term post-transplant survival. J Thorac Cardiovasc Surg 150:1352–1361CrossRefPubMedGoogle Scholar
  32. 32.
    Al Kindi SG, Farhoud M et al (2017) Left ventricular assist devices or inotropes for decreasing pulmonary vascular resistance in patients with pulmonary hypertension listed for heart transplantation. J Card Fail 23:209–215CrossRefGoogle Scholar
  33. 33.
    Imamura F, Chung B, Nguyen A et al (2017) Decoupling between diastolic pulmonary artery pressure and pulmonary capillary wedge pressure as a prognostic factor after continuous flow ventricular assist device implantation. Circ Heart Fail 10:e3882CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bursi F, Barbieri A, Grigioni F et al (2010) Prognostic implications of functional mitral regurgitation according to the severity of the underlying chronic heart failure: a long-term outcome study. Eur J Heart Fail 12:382–388CrossRefPubMedGoogle Scholar
  35. 35.
    Lancellotti P, Magne J, Dulgheru R et al (2015) Clinical significance of exercise pulmonary hypertension in secondary mitral regurgitation. Am J Cardiol 115:1454–1461CrossRefPubMedGoogle Scholar
  36. 36.
    Kusunose K, Popović ZB, Motoki H, Marwick TH (2013) Prognostic significance of exercise-induced right ventricular dysfunction in asymptomatic degenerative mitral regurgitation. Circ Cardiovasc Imaging 6:167–176CrossRefPubMedGoogle Scholar
  37. 37.
    Gaemperli O, Moccetti M, Surder D et al (2012) Acute haemodynamic changes after percutaneous mitral valve repair: relation to mid-term outcomes. Heart 98:126–132CrossRefPubMedGoogle Scholar
  38. 38.
    Stone GW, Lindenfeld J, Abraham WT et al (2018) Transcatheter mitral-valve repair in patients with heart failure. N Engl J Med 379:2307–2318CrossRefGoogle Scholar
  39. 39.
    Faggiano P, Antonini-Canterin F, Ribichini F et al (2000) Pulmonary artery hypertension in adult patients with symptomatic valvular aortic stenosis. Am J Cardiol 85:204–208CrossRefPubMedGoogle Scholar
  40. 40.
    Zuern CS, Eick C, Rizas K et al (2012) Prognostic value of mild-to-moderate pulmonary hypertension in patients with severe aortic valve stenosis undergoing aortic valve replacement. Clin Res Cardiol 101:81–88CrossRefPubMedGoogle Scholar
  41. 41.
    Roques F, Nashef SA, Michel P et al (1999) Risk factors and outcome in European cardiac surgery: analysis of the EuroSCORE multinational database of 19030 patients. Eur J Cardiothorac Surg 15:816–822CrossRefPubMedGoogle Scholar
  42. 42.
    Smith CR, Leon MB, Mack MJ et al (2011) Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med 364:2187–2198CrossRefGoogle Scholar
  43. 43.
    Reardon MJ, Van Mieghem NM, Popma JJ et al (2017) Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N Engl J Med 376:1321–1331CrossRefPubMedGoogle Scholar
  44. 44.
    Leon MB, Smith CR, Mack MJ et al (2016) Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med 374:1609–1620CrossRefPubMedGoogle Scholar
  45. 45.
    Mack MJ, Leon MB, Thourani VH et al (2019) Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med 380:1706–1715CrossRefGoogle Scholar
  46. 46.
    Fisher MR, Forfia PR, Chamera E et al (2009) Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med 179:615–621CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Marciniak A, Klover K, Sharma R (2017) Cohort profile: prevalence of valvular heart disease in community patients with suspected heart failure in UK. BMJ Open 7:e12240CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wang N, Fulcher J, Abeysuriya N et al (2019) Tricuspid regurgitation is associated with increased mortality independent of pulmonary pressures and right heart failure: a systematic review and meta-analysis. Eur Heart J 40:476–484CrossRefPubMedGoogle Scholar
  49. 49.
    Topilsky Y, Maltais S, Medina Inojosa J et al (2019) Burden of tricuspid regurgitation in patients diagnosed in the community setting. JACC Cardiovasc Imaging 12:433–442CrossRefPubMedGoogle Scholar
  50. 50.
    Topilsky Y, Nkomo VT, Vatury O et al (2014) Clinical outcome of isolated tricuspid regurgitation. JACC Cardiovasc Imaging 7:1185–1194CrossRefPubMedGoogle Scholar
  51. 51.
    Nickenig G, Kowalsi M, Hausleiter J et al (2017) Transcatheter treatment of severe tricuspid regurgitation with the edge-to-edge MitraClip technique. Circulation 135:1802–1814CrossRefPubMedGoogle Scholar
  52. 52.
    Prihadi EA, van der Bijl P, Gursoy E et al (2018) Development of significant tricuspid regurgitation over time and prognostic implications: new insights into natural history. Eur Heart J 39:3574–3581CrossRefPubMedGoogle Scholar
  53. 53.
    Prihadi EA, Delgado V, Leon MB et al (2019) Morphologic types of tricuspid regurgitation: characteristics and prognostic implications. JACC Cardiovasc Imaging 12:491–499CrossRefPubMedGoogle Scholar
  54. 54.
    Lang IM, Pesavento R, Bonderman D, Yuan JX (2013) Risk factors and basic mechanisms of chronic thromboembolic pulmonary hypertension: a current understanding. Eur Respir J 41:462–468CrossRefPubMedGoogle Scholar
  55. 55.
    Mahmud E, Madani MM, Kim NH et al (2018) Chronic thromboembolic pulmonary hypertension: evolving therapeutic approaches for operable and inoperable disease. J Am Coll Cardiol 71:2468–2486CrossRefPubMedGoogle Scholar
  56. 56.
    Medvedofsky D, Aronson D, Gomberg-Maitland M et al (2017) Tricuspid regurgitation progression and regression in pulmonary arterial hypertension: implications for right ventricular and tricuspid valve apparatus geometry and patients outcome. Eur Heart J Cardiovasc Imaging 18:86–94CrossRefPubMedGoogle Scholar
  57. 57.
    De Meester P, De Cock D, Van De Bruaene A et al (2015) Additional tricuspid annuloplasty in mitral valve surgery results in better clinical outcome. Heart 101:720–726CrossRefPubMedGoogle Scholar
  58. 58.
    Chickwe J, Itagaki S, Anyanwu A, Adams DH (2015) Impact of concomitant tricuspid annuloplasty on tricuspid regurgitation, right ventricular function, and pulmonary artery hypertension after repair of mitral valve prolapse. J Am Coll Cardiol 65:1931–1938CrossRefGoogle Scholar
  59. 59.
    Borlaug B, Kane GC, Melenovsky V, Olson TP (2016) Abnormal right ventricular-pulmonary artery coupling with exercise in heart failure with preserved ejection fraction. Eur Heart J 37:3293–3302PubMedGoogle Scholar
  60. 60.
    Kang DH, Park SJ, Shin SH et al (2019) Angiotensin receptor neprilysin inhibitor for functional mitral regurgitation. Circulation 139:1354–1365CrossRefPubMedGoogle Scholar
  61. 61.
    Bermejo J, Yotti R, García-Orta R et al (2018) Sildenafil for improving outcomes in patients with corrected valvular heart disease and persistent pulmonary hypertension: a multicenter, double-blind, randomized clinical trial. Eur Heart J 39:1255–1264CrossRefPubMedGoogle Scholar
  62. 62.
    Baumgartner H, Falk V, Bax JJ et al (2017) 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J 38:2739–2791CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • T. Tichelbäcker
    • 1
  • D. Dumitrescu
    • 2
  • F. Gerhardt
    • 1
  • D. Stern
    • 1
  • M. Wissmüller
    • 1
  • M. Adam
    • 1
  • T. Schmidt
    • 1
  • C. Frerker
    • 1
  • R. Pfister
    • 1
  • M. Halbach
    • 1
  • S. Baldus
    • 1
  • S. Rosenkranz
    • 1
    Email author
  1. 1.Klinik III für Innere Medizin und Cologne Cardiovascular Research Center (CCRC), HerzzentrumUniversitätsklinik KölnCologneGermany
  2. 2.Klinik für Allgemeine und Interventionelle KardiologieHerz- und Diabeteszentrum NRWBad OeynhausenGermany

Personalised recommendations