Advertisement

Herz

pp 1–7 | Cite as

Prognosis of patients with previous myocardial infarction, coronary slow flow, and normal coronary angiogram

  • A. ZivanicEmail author
  • I. Stankovic
  • I. Ilic
  • B. Putnikovic
  • A. N. Neskovic
Original articles

Abstract

Background

There is a common assumption that patients with coronary slow flow (CSF) have an excellent prognosis in the absence of coronary artery stenoses. Little is known about whether a history of previous coronary events affects the long-term survival in this population. In this retrospective, observational study, we assessed the possible association of a previous coronary event and long-term prognosis in patients with CSF but without significant coronary artery stenoses.

Methods

A total of 141 patients (70 male; median age: 59 years, range: 33–78 years) with CSF and normal coronary angiograms were included in the study. Patients were followed up for all-cause mortality during a period of 47 ± 22 months.

Results

Previous myocardial infarction (MI) was reported by 16 (11%) patients who had similar left ventricular ejection fraction (LVEF) as those without previous MI (51 ± 16 vs. 53 ± 16%, p = 0.595). Patients with previous MI more often had an abnormal resting electrocardiogram (69 vs. 40%, p = 0.03), while there were no significant differences in other baseline clinical characteristics (p > 0.05 for age, gender, risk factors, pharmacological treatment). In univariate Cox analysis, only previous MI was associated with unfavorable long-term survival (log-rank p = 0.012), while an abnormal electrocardiogram, LVEF, and other clinical variables were not (log-rank p > 0.05, for all). Kaplan–Meier analysis revealed unfavorable long-term survival in patients with CSF and a history of previous MI.

Conclusion

In patients with CSF and an otherwise normal coronary angiogram, a history of a previous MI is associated with unfavorable long-term outcomes.

Keywords

Coronary stenosis Heart attack Angiography Risk factors Prognosis 

Prognose von Patienten mit früherem Myokardinfarkt, langsamem Koronarfluss und normalem Koronarangiogramm

Zusammenfassung

Hintergrund

Es besteht die allgemeine Annahme, dass Patienten mit langsamem Koronarfluss („coronary slow flow“, CSF) eine ausgezeichnete Prognose haben, wenn keine Koronarstenose vorliegt. Nur wenig ist darüber bekannt, ob koronare Ereignisse in der Anamnese sich auf das Langzeitüberleben in dieser Population auswirken. In dieser retrospektiven Beobachtungsstudie wurde ein möglicher Zusammenhang zwischen einem früheren koronaren Ereignis und der Langzeitprognose bei Patienten mit CSF, aber ohne relevante Koronarstenosen untersucht.

Methoden

In die Studie wurden 141 Patienten (70 m., Durchschnittsalter: 59 Jahre, Spanne: 33–78 Jahre) mit CSF und normalem Koronarangiogramm einbezogen. Die Patienten wurden hinsichtlich der Gesamtmortalität über 47 ± 22 Monate nachbeobachtet.

Ergebnisse

Ein früherer Myokardinfarkt (MI) wurde von 16 (11 %) Patienten angegeben, die eine ähnliche linksventrikuläre Ejektionsfraktion (LVEF) wie Personen ohne vorherigen MI aufwiesen (51 ± 16 vs. 53 ± 16 %; p = 0,595). Bei Patienten mit früherem MI bestanden häufiger Auffälligkeiten im Ruhe-EKG (69 vs. 40 %; p = 0,03), jedoch gab es keine signifikanten Unterschiede bei anderen klinischen Charakteristika in der Ausgangssituation (p > 0,05 für Alter, Geschlecht, Risikofaktoren, pharmakologische Therapie). In der univariaten Cox-Analyse war nur ein früherer MI mit einem ungünstigen Langzeitüberleben verknüpft (Log-Rank-Test, p = 0,012), nicht aber ein auffälliges EKG, die LVEF und andere klinische Variablen (Log-Rank-Test, p > 0,05 für alle). Die Kaplan-Meier-Analyse ergab ein ungünstiges Langzeitüberleben bei Patienten mit CSF und einem MI in der Anamnese.

Schlussfolgerung

Bei Patienten mit CSF und einem ansonsten normalen Koronarangiogramm steht ein MI in der Anamnese mit ungünstigen Langzeitergebnissen in Zusammenhang.

Schlüsselwörter

Koronarstenose Herzanfall Angiographie Risikofaktoren Prognose 

Notes

Acknowledgements

The authors would like to thank Stefan Stankovic for his assistance with data collection.

Compliance with ethical guidelines

Conflict of interest

A. Zivanic, I. Stankovic, I. Ilic, B. Putnikovic, and A.N. Neskovic declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

References

  1. 1.
    Marinescu MA, Adrián I, Löffler AI et al (2015) Coronary microvascular dysfunction and microvascular angina: a systematic review of therapies. Jacc Cardiovasc Imaging 8(2):210–220CrossRefGoogle Scholar
  2. 2.
    Montalescot G, Sechtem U, Andreotti S et al (2013) ESC guidelines on the management of stable coronary artery disease: The Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34:2949–2300CrossRefGoogle Scholar
  3. 3.
    Sestito A, Lanza GA, Di Monaco A et al (2011) Relation between cardiovascular risk factors and coronary microvascular dysfunction in cardiac syndrome X. J Cardiovasc Med 12:322–327CrossRefGoogle Scholar
  4. 4.
    Tambe AA, Demany MA, Zimmerman HA, Mascarenhas E (1972) Angina pectoris and slow flow velocity of dye in coronary arteries: a new angiographic finding. Am Heart J 84:66–71CrossRefGoogle Scholar
  5. 5.
    Saya S, Hennebry TA, Lozano P, Lazzara R, Schechter E (2008) Coronary slow flow phenomenon and risk for sudden cardiac death due to ventricular arrhythmias: a case report and review of literature. Clin Cardiol 31(8):352–355CrossRefGoogle Scholar
  6. 6.
    Mosseri M, Yarom R, Gotsman MS, Hasin Y (1986) Histologic evidence for small-vessel coronary artery disease in patients with angina pectoris and patent large coronary arteries. Circulation 74:964–972CrossRefGoogle Scholar
  7. 7.
    Mullasari A, Victor SM (2013) Coronary slow flow phenomenon. E‑journal Cardiol Pract 11:25Google Scholar
  8. 8.
    Goel PK, Gupta SK, Agarwal A, Kapoor A (2001) Slow coronary flow: a distinct angiographic subgroup in syndrome X. Angiology 52:507–514CrossRefGoogle Scholar
  9. 9.
    Li JJ, Wu YJ, Qin XW (2006) Should slow coronary flow be considered as a coronary syndrome? Med Hypotheses 66:953–956CrossRefGoogle Scholar
  10. 10.
    Leone MC, Gori T, Fineschi M (2008) The coronary slow flow phenomenon: a new cardiac “Y” syndrome? Clin Hemorheol Microcirc 39:185–190PubMedGoogle Scholar
  11. 11.
    Fineschi M, Gori T (2010) Coronary slow-flow phenomenon or syndrome Y: a microvascular angina awaiting recognition. J Am Collcardiol 56:239–240CrossRefGoogle Scholar
  12. 12.
    Beltrame JF, Limaye SB, Horowitz JD (2002) The coronary slow flow phenomenon—a new coronary microvascular disorder. Cardiology 97:197–202CrossRefGoogle Scholar
  13. 13.
    Wang X, Nie (2011) The coronary slow flow phenomenon: characteristics, mechanisms and implications. Cardiovasc Diagn Ther 1(1):37–43PubMedPubMedCentralGoogle Scholar
  14. 14.
    Cutri N, Zeitz C, Kucia AM, Beltrame JF (2011) ST/T wave changes during acute coronary syndrome presentation in patients with the coronary slow flow phenomenon. Int J Cardiol 146:457–458CrossRefGoogle Scholar
  15. 15.
    Horjeti B, Goda A (2012) Acute ischemia manifestation in a patient with coronary slow flow phenomenon. J Electrocardiol 45:277–279CrossRefGoogle Scholar
  16. 16.
    Wozakowska-Kaplon B, Niedziela J, Krzyzak P, Stec SI (2009) Clinical manifestations of slow coronary flow from acutecoronary syndrome to serious arrhythmias. Cardiol J 16:462–468PubMedGoogle Scholar
  17. 17.
    Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16(3):233–270CrossRefGoogle Scholar
  18. 18.
    Yetkin E, Turhan H, Erbay AR, Aksoy Y, Senen K (2005) Increased thrombolysis in myocardial infarction frame count in patients with myocardial infarction and normal coronary arteriogram: a possible link between slow coronary flow and myocardial infarction. Atherosclerosis 181(1):193–199CrossRefGoogle Scholar
  19. 19.
    Chesebro JH, Knautterud G, Roberts R et al (1987) Thrombolysis in Myocardial Infarction (TIMI) Trial, Phase I: A comparison between intravenous tissue plasminogen activator and intravenous streptokinase. Clinical findings through hospital discharge. Circulation 76:142–154CrossRefGoogle Scholar
  20. 20.
    Beltrame JF (2012) Defining the coronary slow flow phenomenon. Circ J 76:818–820CrossRefGoogle Scholar
  21. 21.
    Amirzadegan A, Motamed A, Davarpasand T, Shahrzad M, Lotfi-Tokaldany M (2012) Clinical characteristics and mid-term outcomes of patients with slow coronary flow. Acta Cardiol 67:583–587CrossRefGoogle Scholar
  22. 22.
    Khor L, Tavella R, Beltrame J (2013) Long term outcomes in patients with the coronary slow flow phenomenon. Heart Lung Circ 22:219CrossRefGoogle Scholar
  23. 23.
    Fragasso G, Chierchia SL, Arioli F et al (2009) Coronary slow-flow causing transient myocardial hypoperfusion in patients with cardiac syndrome X: long-term clinical and functional prognosis. Int J Cardiol 137(2):137–144CrossRefGoogle Scholar
  24. 24.
    Erdogan D, Caliskan M, Gullu H, Sezgin AT, Yildirir A, Muderrisoglu H (2007) Coronary flow reserve is impaired in patients with slow coronary flow. Atherosclerosis 191(1):168–174CrossRefGoogle Scholar
  25. 25.
    Sadr-Ameli MA, Saedi S, Saedi T, Madani M, Esmaeili M, Ghardoost B (2015) Coronary slow flow: benign or ominous? Anatol J Cardiol 15(7):531–535CrossRefGoogle Scholar
  26. 26.
    Mangieri E, Tanzilli G, Vincentis et al (2006) Slow coronary flow and stress myocardial perfusion imaging. Different patterns in acute patients. J Cardiovasc Med 7(5):322–327CrossRefGoogle Scholar
  27. 27.
    Ayhan E, Uyarel H, Isık T et al (2012) Slow coronary flow in patients undergoing urgent coronary angiography for ST elevation myocardial infarction. Int J Cardiol 156(1):106–108CrossRefGoogle Scholar
  28. 28.
    Dogan A, Oylumlu M, Kilit C, Özgeyik M (2016) ST elevation myocardial infarction caused by coronary slow flow: case report and brief review of the literature. Int J Cardiovasc Acad 2(1):52–55CrossRefGoogle Scholar
  29. 29.
    Sen T (2013) Coronary slow flow phenomenon leads to ST elevation myocardial infarction. Korean Circ J 43(3):196–198CrossRefGoogle Scholar
  30. 30.
    Carunchio A, Ricci R, Mazzarotto P et al (2005) Non-ST-elevation myocardial infarction with normal coronary arteries, clinical features and coronary artery flow. Ital Heart J Suppl 6(4):205–213PubMedGoogle Scholar
  31. 31.
    Kopetz V, Penno M, Hoffmann P, Wilson D, Beltrame J (2012) Potential mechanisms of the acute coronary syndrome presentation in patients with the coronary slow flow phenomenon—Insight from a plasma proteomic approach. Int J Cardiol 156:84–91CrossRefGoogle Scholar
  32. 32.
    Yaylali YT, Susam I, Demir E et al (2013) Increased red blood cell deformability and decreased aggregation as potential adaptive mechanisms in the slow coronary flow phenomenon. Coron Artery Dis 24(1):11–15CrossRefGoogle Scholar
  33. 33.
    Bilgi M, Güllü H, Kozanoğlu İ et al (2013) Evaluation of blood rheology in patients with coronary slow flow or non-obstructive coronary artery disease. Clin Hemorheol Microcirc 53(4):317–326PubMedGoogle Scholar
  34. 34.
    Akpinar I, Sayin MR, Gursoy YC et al (2014) Plateletcrit and red cell distribution width are independent predictors of the slow coronary flow phenomenon. J Cardiol 63(2):112–118CrossRefGoogle Scholar
  35. 35.
    Cin VG, Pekdemir H, Camsar A et al (2003) Diffuse intimal thickening of coronary arteries in slow coronary flow. Jpn Heart J 44:907–919CrossRefGoogle Scholar
  36. 36.
    Pekdemir H, Polat G, Cin VG et al (2004) Elevated plasma endothelin-1 levels in coronary sinus during rapid right atrial pacing in patients with slow coronary flow. Int J Cardiol 97:35–41CrossRefGoogle Scholar
  37. 37.
    Beltrame JF, Limaye SB, Wuttke RD, Horowitz JD (2003) Coronary hemodynamic and metabolic studies of the coronary slow flow phenomenon. Am Heart J 146(1):84–90CrossRefGoogle Scholar
  38. 38.
    De Bruyne B, Hersbach F, Pijls NH et al (2001) Abnormal epicardial coronary resistance in patients with diffuse atherosclerosis but “normal” coronary angiography. Circulation 104(20):2401–2406CrossRefGoogle Scholar
  39. 39.
    Williams MJ, Stewart RA (1999) Coronary artery flow ten weeks after myocardial infarction or unstable angina: effects of combined warfarin and aspirin therapy. Int J Cardiol 69:19–25CrossRefGoogle Scholar
  40. 40.
    Yilmaz H, Demir I, Uyar Z (2008) Clinical and coronary angiographic characteristics of patients with coronary slow flow. Acta Cardiol 63:579–584CrossRefGoogle Scholar
  41. 41.
    Elsherbiny IA (2012) Left ventricular function and exercise capacityin patients with slow coronary flow. Echocardiography 29:158–164CrossRefGoogle Scholar
  42. 42.
    Nurkalem Z, Gorgulu S, Uslu N et al (2009) Longitudinal left ventricular systolic function is impaired in patients with coronary slow flow. Int J Cardiovasc Imaging 25:25–32CrossRefGoogle Scholar
  43. 43.
    Zencir C, Cetin M, Güngör H et al (2013) Evaluation of left ventricular systolic and diastolic functions in patients with coronary slow flow phenomenon. Turk Kardiyol Dern Ars 41:691–696CrossRefGoogle Scholar
  44. 44.
    Narimani S, Hosseinsabet A, Pourhosseini H (2016) Effect of coronary slow flow on the longitudinal left ventricular function assessed by 2‑dimensional speckle-tracking Echocardiography. J Ultrasound Med 35(4):723–729CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • A. Zivanic
    • 1
    Email author
  • I. Stankovic
    • 1
  • I. Ilic
    • 1
  • B. Putnikovic
    • 1
  • A. N. Neskovic
    • 1
  1. 1.Department of Cardiology, Clinical Hospital Center Zemun, Faculty of MedicineUniversity of BelgradeBelgradeSerbia

Personalised recommendations